
Varanus: In Situ Monitoring for
Large Scale Cloud Systems

Jonathan Stuart Ward and Adam Barker

School of Computer Science

University of St Andrews, UK

Abstract—Monitoring is an essential aspect of maintaining
and developing computer systems which increases in difficulty
proportional to the size of the system. The need for robust
monitoring tools has become more evident with the advent
of cloud computing. Infrastructure as a Service (IaaS) clouds
allow end users to deploy vast numbers of virtual machines as
part of dynamic and transient architectures. Current monitoring
solutions, including many of those in the open-source domain,
rely on outdated concepts including manual configuration and
centralised data collection and adapt poorly to membership
churn. In this paper we propose the development of a cloud
monitoring system to provide scalable and robust lookup, data
collection and analysis services for large-scale cloud systems. In
lieu of centrally managed monitoring we propose a multi-tier
architecture using a layered gossip protocol to aggregate moni-
toring information and facilitate lookup, information collection
and the identification of redundant capacity. This allows for
a resource aware data collection and storage architecture that
operates over the system being monitored. This in turn enables
monitoring to be done in situ without the need for significant
additional infrastructure to facilitate monitoring services. We
evaluate this approach against alternative monitoring paradigms
and demonstrate how our solution is well adapted to usage in a
cloud-computing context.

I. INTRODUCTION

Cloud computing has become the premier means to rapidly

deploy internet scale systems. Amazon Web Services (AWS),

the most prevalent public cloud provider, has become the

worlds largest internet host [5] and cloud computing has

become a standard, well accepted, paradigm. Central to the

concept of cloud computing is the idea of rapid elasticity: the

mechanism to provision, scale and terminate infrastructure in

a short amount of time. Despite the intrinsic importance of

rapid scalability it is poorly catered for by many applications

built upon the cloud. Many applications used on the cloud are

mired in concepts and technologies which were never designed

to tolerate rapid elasticity at scale.

Among the applications which have seen insufficient adap-

tion towards cloud environments are monitoring tools. Within

the cloud domain there is a clear dichotomy of monitor-

ing tools. There is either the choice to deploy one’s own

monitoring infrastructure at ones own cost or to leverage

a monitoring service which abstracts the monitoring infras-

tructure away from the user. In either case monitoring is

achieved through the use of a pool of monitoring servers which

collect information from a series of monitored hosts. As the

size of the system changes the pool of monitoring scales to

meet demand. This inevitably results in substantial overhead

costs for large scale systems. In the case of many common

monitoring systems this issue is further compounded by the

need for manual configuration and an intolerance to churn

which make monitoring a laborious process. The lack of user

deployable monitoring systems which are well adapted for use

in a cloud environment is a limiting factor in provisioning

cloud architectures and is restrictive in private clouds whereby

many proprietary monitoring services are unavailable.

We therefore propose Varanus1 a highly scalable decen-

tralised monitoring system for cloud computing. In this pa-

per we propose and evaluate Varanus as an architecture for

performing fully decentralised data collection, analysis and

monitoring of cloud virtual machines (VMs). Our approach

rejects conventional monitoring concepts in lieu of a decen-

tralised approach based upon a layered gossip algorithm [1].

By leveraging this mechanism we propose an architecture

which is highly scalable, and attempts to eliminate the need

for additional, dedicated monitoring infrastructure. Through

this approach we intend to meet the requirements imposed by

rapid-elasticity [9] and provide a monitoring system suitable

for cloud computing.

II. ARCHITECTURE

A. Layered Gossip Broadcast

A probabilistic broadcast protocol otherwise known as

gossip or epidemic protocol is the primary communication

mechanism employed by Varanus. In large scale cloud systems

individual VMs operate under a range of computation and

communication constraints. By distributing the computational

complexity of an operation over the system, gossip protocols

offer a means to develop mechanisms better suited to large

scale systems. Gossip protocols have been demonstrated to

be effective mechanisms for providing robust and scalable

services for distributed systems including information dissem-

ination [2], aggregation [3] and failure detection [6].

The basic operation of the Varanus gossip protocol con-

sists of the periodic, pairwise propagation of state between

two processes. This mechanism underpins the data collection

and agreement protocols which support monitoring functions.

Each monitoring agent participates in a gossip based overlay

network. Using this overlay monitoring agents propagate and

receive state from other, nearby, agents. This is achieved

1Varanus is the genus of the monitor lizard

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.164

341

Fig. 1. Inter and Intra Cloud Communication Model

by performing a pull-push operation with neighbouring cor-

respondents. Correspondents exchange state every Tinterval

seconds according to the following scheme:

1) Select a number of targets from the group view equal to

the Fanout value.

2) Push entries from the local state and pull entries from

the targets state.

3) The agent may now have duplicate state. For each

instance of duplicate state, the oldest is removed.

Therefore the rate of dissemination of data from a single

process to all other processes can be described by the follow-

ing equation:

St+1 = Tinterval × Fanout× StXt

n
(1)

where S is the number of susceptible processes (those which

have not yet received the information) , X is the number

of infected processes (those which have received the infor-

mation), n is the number of processes and t is the current

timestep. Therefore, the delay in propagating information

can be greatly reduced by decreasing the interval at which

communication occurs (thus increasing the frequency) and by

increasing the fanout value (thus increasing the number of

correspondents selected as targets). Fanout in Varanus is by

default log(groupsize) but this can be altered. The frequency

is calculated according to the rate at which monitored values

change at.

In addition to this mechanism, preferential target selection

is used to reduce the delay in propagating state. Targets are

selected based on a weighting scheme which uses round-trip

time estimates in order to select targets which are topologically

closer. Each round of gossip is spatially weighted according

to the scheme proposed in [4], using RTT as a distance metric

in order to propagate updates to all nodes within distance d
within O(log2 d) time steps.

This scheme results in increased memory usage and constant

background communication but achieves rapid state propaga-

tion and resilience to churn and failure. Within a cloud where

there is high bandwidth, low latency and no service metering

this trade-off is acceptable.

B. Communication Hierarchy

Varanus employs a layered gossip approach in order to

reduce the time required to disseminate information and to

exploit the differing network properties in and between cloud

regions. The rationale for this hierarchy is rooted in the dif-

ferences between intra and inter cloud communication. Within

clouds there is high bandwidth, low latency and the connection

is unmetered. This is true of virtually all commercial cloud

providers. It is also true of any private cloud with a public

network between cloud regions. This environment lends itself

to the use of rapid information dissemination based on an

unreliable protocol such as UDP. Between cloud regions this

is not as feasible as costs arising from latency and bandwidth

metering force communication to be performed in a slower,

more reliable fashion. This therefore requires a slower, reliable

protocol to synchronise state between regions.

The gossip protocol described in section A, is applied at

every level of the hierarchy. What differs between each level

is the information which is communicated and the frequency

at which communication occurs. There are three levels of the

hierarchy as shown in Figure 1:

1) Intra Group: communication between monitoring agents

within the same group. This occurs at a near constant

rate. Every time a state change occurs the correspondent

propagates the state change to its neighbours. At this

level of granularity, the full state stored by the monitor-

ing agent is propagated to its neighbours.

2) Inter-Group: communication between monitoring agents

in different groups within the same region. This occurs

at a frequent but non constant rate. Periodically state

is propagated to external groups according to a shifting

interval. At this level, only aggregated values for the re-

gion resource usage and a small subset of local contacts

and foreign contacts are propagated.

342

3) Inter-Region: communication between monitoring

agents in different groups and different cloud regions.

This occurs proportionally to the inter-group rate. At

this level an aggregate value for the entire region and

subsets of the local and foreign contacts are propagated

between regions.

C. Stored State

The monitoring agent operates a state store which maintains

a subset of global membership information, local and group

monitoring state and aggregates of other monitoring state. In

full, the state store maintains the following:

• Group View: a set of hosts within the same group.

• Local Contacts: a small, fixed size set of hosts within

other groups within the same cloud region. Each entry

carries fields for round-trip time and heartbeat count.

• Foreign Contacts: a small, fixed size set of hosts within

other groups within other cloud regions.

• Group Resource Usage: a dictionary, proportional to the

size of the group storing recent resource usage of group

members including CPU, memory, disk and network

usage.

• Local Region Resource Usage: set of aggregated values

representing resource usage within each group within the

same region.

• Region Resource Usage: a set of aggregated values rep-

resenting resource usage within a region.

• Publisher Functions: a set of data collection functions

which populate the state store.

• Analysis Functions: a set of analysis functions which

operate on designated analysis nodes.

This state is propagated according to the communication

hierarchy described in B.

D. Data Collection

The set of resource usage metrics stored as part of the

set is populated by a series of publisher functions. Each

publisher runs in parallel and publishes a metric to the state

store. Publishers are also stored within the monitoring agent’s

state store allowing for publishers to be added or removed at

runtime. By default the monitoring agent includes publishers

providing the following metrics: CPU usage, memory usage,

network traffic and disk capacity.

Additional publishers can be provided when the monitoring

agent is installed or at runtime. Publisher functions can be

propagated within groups in the same manner as other state

allowing for the user to introduce new functions to obtain

additional metrics after initial deployment allowing for the

programmatic alteration of the monitoring service. Publishers

can be introduced as a one-time function in order to obtain

values which are seldom required or as permanent additions

which will continuously publish their respective metric. This

allows the data that the system collects to be programatically

altered enabling the monitoring system to alter its behaviour

as requirements shift.

E. Group Allocation

Group allocation operates upon the premise that monitoring

information from a VM is most pertinent to other VMs

which are similar to the first. This is the case for many

cloud use cases including load balancing, batch computing

and any application benefiting from rapid elasticity. In order to

group related VMs an algorithm reminiscent of the distributed

k-nearest neighbour algorithm is used. Each VM computes

a feature vector describing its software configuration. The

feature vector details the OS and significant software which is

the software that the VM has been specifically provisioned to

run. This includes: web servers, database servers and compute

nodes. When bootstrapping, VMs compute this feature vector

while groups compute an average feature vector. The averaged

vector describes the most common attributes of that group.

The bootstrapping process utilises a k-nearest neighbour like

algorithm to determine which, of the set of group feature

vectors is closest to that of the new VM. The new VM then

joins the group which has the greatest similarity to itself.

F. Data Analysis

Monitoring systems are typically required to fulfil a min-

imum of analysis functions in order to reduce human in-

volvement with the monitoring process. In existing systems

analysis is performed as a centralised function usually on a

dedicated monitoring server. In the case of Varanus, analysis

functions are distributed throughout the system. Each group is

responsible for performing its own analysis.

The propagation of resource usage information allows for

the least utilised VMs within a group to be trivially identified.

In the case where there are underutilised VMs, those VMs

are nominated to perform analysis services for the group.

Otherwise, analysis services are provided by the least loaded

VMs within the group. If all VMs within the group are heavily

loaded it is necessary for an additional dedicated analysis VM

to be provisioned. Analysis functions can be introduced and

propagated in the same manner as other state.

III. EVALUATION

In the following section we will numerically evaluate

Varanus against alternative monitoring strategies.

A common criticism of gossip protocols is their potentially

significant use of bandwidth. In Varanus computational com-

plexity is reduced at the expense of communication complex-

ity. In order to examine the implications of this trade-off we

simulated the layered gossip architecture of Varanus, a more

basic flat gossip scheme and a conventional centralised mon-

itoring architecture (such as that of Nagios). The simulation

was created in Python using the Nessi library [7]. Our software

simulation implements the same data collection strategy as the

actual monitoring system. The simulation records the number

of messages required in order to disseminate a monitoring

metric from one host to the monitoring system. Figure 2

illustrates the findings from this experiment.

The two gossip based architectures have notably higher

message rates than that of the centralised architecture. In

the case of the flat gossip architecture the message rate is

343

(a) Simulated Messages Rates of Varanus and other architectures per
host

(b) Simulated System Wide Message Rates of Varanus and other architectures

Fig. 2. Message rates in monitoring architectures

around three times that of the centralised architecture. The

additional overhead is due to the number of messages required

to aggregate and then propagate information throughout the

system. Despite a greater message rate than the centralised

collection scheme, Varanus has a relatively conservative rate

when compared to the flat scheme. This is due to the grouping

and layering mechanisms present in Varanus which enforce a

communication hierarchy which limits global communication.

Despite being double the rate of the centralised system, a

vast disparity only emerges when operating at scale. Even at

scale we argue that the message rates imposed by Varanus are

acceptable in a cloud environment. The high bandwidth, low

latency environment present in clouds allows for applications

to leverage greater message rates. The scare resource in cloud

environments is CPU and memory and not bandwidth. We

therefore contend that Varanus has achieved an acceptable

level of background communication in exchange for decen-

tralised monitoring.

IV. CONCLUSION

We have proposed Varanus, a highly decentralised monitor-

ing system as a means to monitor large scale cloud systems

without (or with a reduced need) for dedicated monitoring

infrastructure. Varanus has significant benefits over existing

systems, notably it provides mechanisms for programmatic

runtime reconfiguration and executes monitoring analytics in

a scalable, resource aware manner. As large cloud hosted sys-

tems become increasingly common we propose our system as

a means of reducing the overhead, complexity and bottlenecks

inherently associated with current monitoring technologies.

The architecture described here provides a mechanism for

the scalable collection of monitoring metrics and the analysis

of these metrics. It does not however provide a full, compre-

hensive monitoring suite. In order to fully monitor a system

Varanus must become aware of applications running on the

monitored system. What Varanus does provide however, is the

foundation for an application aware monitoring system. The

primary concern of future work is to develop application mon-

itoring functions on top of the Varanus architecture described

here.

REFERENCES

[1] Ken Birman. The promise, and limitations, of gossip protocols. SIGOPS
Oper. Syst. Rev., 41(5):8–13, October 2007.

[2] Anwitaman Datta and Rajesh Sharma. Godisco: selective gossip based
dissemination of information in social community based overlays. In Pro-
ceedings of the 12th international conference on Distributed computing
and networking, ICDCN’11, pages 227–238, Berlin, Heidelberg, 2011.
Springer-Verlag.

[3] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput. Syst.,
23(3):219–252, August 2005.

[4] David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossip and
resource location protocols. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, STOC ’01, pages 163–172,
New York, NY, USA, 2001. ACM.

[5] Netcraft Ltd. http://news.netcraft.com/archives/2013/01/07/january-2013-
web-server-survey-2.html, 2013.

[6] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-
style failure detection service. In Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing, Middleware ’98, pages 55–70, London, UK, UK, 1998.
Springer-Verlag.

[7] J. Vernez, J. Ehrensberger, and S. Robert. Nessi: a python network
simulator for fast protocol development. In Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks, 2006 11th
International Workshop on, pages 67–71, 2006.

[8] Spyros Voulgaris, Mrk Jelasity, and Maarten Van Steen. A robust and
scalable peer-to-peer gossiping protocol. In In 2nd Intl Workshop Agents
and Peer-toPeer Computing, LNCS 2872, pages 47–58. Springer, 2003.

[9] Jonathan Stuart Ward and Adam Barker. Semantic based data collection
for large scale cloud systems. In Proceedings of the fifth international
workshop on Data-Intensive Distributed Computing Date, DIDC ’12,
pages 13–22, New York, NY, USA, 2012. ACM.

344

