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Abstract—As the number of services and the size of data involved in workflows increases, centralized orchestration techniques are

reaching the limits of scalability. When relying on web services without third-party data transfer, a standard orchestration model needs

to pass all data through a centralized engine, which results in unnecessary data transfer and the engine to become a bottleneck to the

execution of a workflow. As a solution, this paper presents and evaluates Circulate, an alternative service-oriented architecture which

facilitates an orchestration model of central control in combination with a choreography model of optimized distributed data transport.

Extensive performance analysis through the PlanetLab framework is conducted on a web service-based implementation over a range

of Internet-scale configurations which mirror scientific workflow environments. Performance analysis concludes that our architecture’s

optimized model of data transport speeds up the execution time of workflows, consistently outperforms standard orchestration and

scales with data and node size. Furthermore, Circulate is a less-intrusive solution as individual services do not have to be reconfigured

in order to take part in a workflow.

Index Terms—Service-oriented architecture, orchestration, choreography, workflow optimization.
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1 INTRODUCTION

MANY problems at the forefront of science, engineering
and medicine require the integration of large-scale

data and computing. The majority of these data sets are
physically distributed from one another, owned and
maintained by different institutions, scattered throughout
the globe [15]. Scientists and engineers require the ability to
access, compose, and process these distributed data sets in
order to discover correlations, enable decision making and
ultimately progress scientific discovery.

In order to integrate software and data, academia and
industry have gravitated toward service-oriented architec-
tures. Service-oriented architectures are an architectural
paradigm for building software applications from a number
of loosely coupled distributed services. This paradigm has
seen wide spread adoption through the web services
approach, which has a suite of simple standards (e.g.,
XML, WSDL, and SOAP) to facilitate interoperability.

These core standards do not provide the rich behavioral
detail necessary to describe the role an individual service
plays as part of a larger, more complex collaboration.
Coordination of services is often achieved through the use
of workflow technologies. As defined by the Workflow
Management Coalition [16], a workflow is the automation
of a business process, in whole or part, during which

documents, information, or tasks are passed from one
participant (a resource either human or machine) to another
for action, according to a set of procedural rules. Workflow
is usually specified from the view of a single participant
using centralized orchestration or from a global perspective
using decentralized choreography.

Orchestration languages explicitly describe the interac-
tions between services by identifying messages, branching
logic, and invocation sequences. Orchestrations are de-
scribed from the view of a single participant, which can be
another service. Therefore, a central process always acts as
a controller to the involved services. The vast majority of
workflow tools are based on orchestrating services through
a centralized workflow engine: the Business Process
Execution Language (BPEL) [29] is the current de facto
standard orchestration language. Workflow tools based on
a centralized enactment engine can easily become a
performance bottleneck for service-oriented workflows: all
data are routed via the workflow engine, these data
consume network bandwidth and overwhelm the central
engine which becomes a bottleneck to the execution of a
workflow. Instead, a solution is desired that permits data
output from one service to be forwarded directly to where
it is needed at the next service in a workflow.

Choreography on the other hand is more collaborative in
nature. A service choreography is a description of the
externally observable peer-to-peer interactions that exist
between services, therefore choreography does not typically
rely on a central co-ordinator. Refer to [3] for a summary of
the differences. By adopting a choreography model, the
output of a service invocation can be passed directly to
where it is required, as input to the next service in the
workflow; not through a centralized workflow engine as is
the case with orchestration. However, although optimal in
terms of data transfer, in practice, the design process and
execution infrastructure for service choreography models
are inherently much more complex than orchestration.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 3, JULY-SEPTEMBER 2012 437

. A. Barker is with the School of Computer Science, University of St.
Andrews, Jack Cole Building, North Haugh, St. Andrews, Fife KY16 9SX,
United Kingdom. E-mail: adam.barker@st-andrews.ac.uk.

. J.B. Weissman is with the Department of Computer Science and
Engineering, University of Minnesota, Twin Cities, 4-192 Keller Hall,
200 Union St. S.E., Minneapolis, MN 55455. E-mail: jon@cs.umn.edu.

. J.I. van Hemert is with Optos, Queensferry House, Carnegie Campus,
Enterprise Way, Dunfermline, Scotland KY11 8GR, United Kingdom.
E-mail: jvanhemert@optos.com.

Manuscript received 8 June 2010; revised 12 Jan. 2011; accepted 22 Mar.
2011; published online 1 Apr. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2010-06-0085.
Digital Object Identifier no. 10.1109/TSC.2011.23.

1939-1374/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



Decentralized control brings a new set of problems, which
are the result of message passing between asynchronous
distributed and concurrent processes. Furthermore, current
choreography techniques are invasive, in that each indivi-
dual service needs to be reengineered in order to take part
in a choreography. There are relatively few decentralized
choreography languages and even fewer implementations
(discussed further in Section 8); the most prevalent being
the Web Services Choreography Description Language
(WS-CDL) [20].

This paper presents and evaluates the Circulate
architecture, which sits in between pure orchestration
(completely centralized) and pure choreography (comple-
tely decentralized). This centralized control flow, distrib-
uted data flow model maintains the robustness and
simplicity of centralized orchestration but facilities chor-
eography by allowing services to transfer data among
themselves, without the complications associated with
modeling and deploying service choreographies. The
Circulate architecture reduces data transfer between
services (which don’t contain functionality for third-party
data transfer), which in turn speeds up the execution time
of workflows and removes the bottlenecks associated with
centralized orchestration.

1.1 Paper Contributions

This paper makes the following core contributions.

1.1.1 Hybrid Architecture

Circulate is a hybrid between orchestration and choreo-
graphy techniques: This model maintains the robustness
and simplicity of centralized orchestration but facilities
choreography by allowing web services to transfer data
among themselves. Importantly, the Circulate architecture
is a general architecture and can therefore be implemented
using different technologies and integrated into existing
systems. However, in this paper we will focus on an
implementation based on web services, which is used as the
basis for our Internet-scale evaluation.

1.1.2 Internet-Scale Evaluation

By avoiding the need to pass large quantities of inter-
mediate data through a centralized server, we demonstrate
through Internet-scale experimentation how the Circulate
architecture reduces data transfer and therefore speeds up
the execution time of a workflow. Our evaluation demon-
strates how Circulate scales in terms of data size and node
size across a range of common workflow topologies.

1.1.3 Less-Intrusive Solution

In contrast with current service choreography techniques,
Circulate is a less-intrusive solution. Our architecture is
decoupled from the services they interact with and can be
deployed without disrupting existing infrastructure; this
means that services do not have to be altered before
execution.

The remainder of this paper is structured as follows:
Section 2 introduces Circulate by discussing the architec-
ture, a web services implementation and providing a
concrete example. Section 3 extracts a set of recurring
workflow patterns which will be referred to throughout the

remainder of this paper. Section 4 discusses the experi-
mental set up used as the basis for the performance analysis
across Local Area Network (LAN) and Internet-scale
network configurations; a cross product of workflow
pattern, node size, and network configuration.

Section 5 presents the results from our LAN configura-
tion, covering the remote LAN case, where all services
are deployed within a LAN but the workflow engine is
remote (common cloud configuration) and the local LAN
case where both the services and engine are deployed on
the same LAN. Section 6 presents the results from our
Internet-scale configurations, executed over the PlanetLab
network, these experiments are broken down into national
(all nodes in the same country), continental (all nodes in the
same continent), and world wide configurations. In Section
7, the Circulate architecture is applied to an end-to-end
application, Montage [17], a benchmark in the High
Performance Computing community. Section 8 presents
related work covering: decentralized choreography lan-
guages, data flow optimization techniques, and Grid
frameworks which contain third-party data transfers. Last,
Section 9 presents conclusions and future work.

2 THE CIRCULATE ARCHITECTURE

This section describes the Circulate architecture’s hybrid
model, web services implementation, API, and a corre-
sponding example of use.

2.1 Circulate Actors

The Circulate architecture is a hybrid between orchestration
and choreography techniques. In order to provide web
services with the required functionality proxies are intro-
duced. A proxy is a lightweight middleware that provides a
gateway and standard API to web service invocation.
Proxies are less-intrusive than existing choreography
techniques as individual services do not have to be
reconfigured in order to take part in a workflow.

Proxies are controlled through a centralized workflow
engine, running an arbitrary workflow language; allowing
standards-based approaches, and tooling to be utilized.
Proxies exchange references to data with the workflow
engine and pass actual data directly to where they are
required for the next service invocation. This allows the
workflow engine to monitor the progress and make changes
to the execution of a workflow.

To utilize a proxy, a web service must first be registered.
The Circulate actors and interactions are illustrated by Fig. 1
and described below.

2.1.1 Engine to Proxy (E! P) Interaction

In the standard orchestration model, the workflow engine
interacts directly with all web services, which for the
remainder of the paper we will denote the engine to web
service interaction ðE! SÞ. Using the Circulate architec-
ture, the workflow engine remains the centralized orches-
trator for the workflow, however the task of service
invocation is delegated to a proxy (E! P).

2.1.2 Proxy-Web Service (P! S) Interaction

Proxies neither create web service requests, nor do they
utilize their responses. Proxies invoke services on behalf of
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a workflow engine, store the result (if required), and return
a reference to the workflow engine.

2.1.3 Proxy to Proxy (P! P) Interaction

Proxies invoke web services on behalf of a workflow
engine, instead of sending the results of a service invocation
back to the workflow engine, they can be stored (if
required) within the proxy. In order for a workflow to
progress, i.e., the output of a service invocation is needed as
input to another service invocation, proxies pass data
among themselves, moving it closer to the source of the
next web service invocation.

Proxies are ideally installed as “near” as possible to
enrolled web services; by near we mean in terms of network
distance, so that the communication overhead between a
proxy and a web service is minimized. Depending on the
preference of an administrator, a proxy can be responsible
for one web service, 1:1 or multiple web services, 1:N.
Although it is ideal to place a proxy as closely as possible to
an enrolled service (e.g., within the same network domain)
it may not always be possible due to the network policy of a
particular organization. Performance benefit can still be
accrued simply by harnessing the connectivity of proxies
scattered across a network; this is demonstrated throughout
our performance analysis across real networks, discussed
further in Sections 5, 6, and 7.

2.2 Web Services Implementation

WS-Circulate is implemented using a combination of Java
and the Apache Axis web services toolkit [2]. Proxies are
simple to install and can be configured remotely, no
specialized programming needs to take place in order to
exploit their functionality. The only changes required are

to the workflow specification itself which invokes methods
on the proxy rather than the services directly. WS-Circulate
is multithreaded and allows several applications to invoke
methods concurrently. Results from web service invoca-
tions are stored at a proxy by tagging them with a
Universally Unique Identifier (UUID) and writing them to
disk. There is an assumption that there is sufficient disk
space and that storage is temporary, which the proxy can
clean up/delete afterwards. Proxies are made available
through a standard WSDL interface. This interface contains
the following operations: invoke, stage, returnData,
flushTempData, addService, removeService, li-

stOps, list-OpParams, listOpReturnType, and
listServices. Full details of the API and implementa-
tion of the proxy can be found in a complementary paper
[4]. In order to simplify the development and deployment,
issues of security have not been taken into account, this is
left to future work.

2.3 Circulate Example

In order to demonstrate the Circulate architecture and API,
consider the following simple scenario (an example of a fan-
in pattern, discussed further in Section 3): three sources

are queried for data via web service interfaces, these data
are combined and used as input to a final sink service,
which processes these data and returns a results set. Using
UML Sequence diagram notation, standard orchestration is
illustrated by Fig. 2 and Circulate by Fig. 3. Thicker arrows
represent data movement, data sizes are arbitrary and used
for illustrative purposes only.

With reference to Fig. 3, the first step in the workflow
pattern involves making an invocation to the three source
web services source1-source3. Instead of contacting the
service directly, a call is made to a proxy (source-proxy)
which has been installed on the same server as the
source1 web service. The proxy invokes the query
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Fig. 2. UML Sequence diagram-orchestrated fan-in.

Fig. 3. UML Sequence diagram-Circulate fan-in.

Fig. 1. Actors and interactions of the circulate architecture. Web services
are represented by hollow circles, proxies by solid circles, the workflow
engine as a square, dashed lines are WAN hops, and solid lines LAN
hops.



operation on the source1 service, the output is passed
back to the proxy, tagged with a UUID (for reference later,
e.g., retrieval, deletion, etc.) and stored. The UUID (not
actual data) is returned to the workflow engine. This
process is repeated (either serially or in parallel) for
source2 and source3 which could be served through
the same proxy or an independent proxy.

The output from the web service invocations are needed
as input to the next service in the workflow, in this case
the sink web service. The workflow engine invokes the
deliver operation on the source-proxy passing in the
three UUID references along with the WSDL address of
the sink-proxy. The source-proxy retrieves the stored
data and transfers it across the network by invoking a
stage operation on sink-proxy. Data are then stored at
sink-proxy, if successful an acknowledgement message
is sent back to source-proxy which is returned to the
workflow engine.

The final stage in the workflow pattern requires using
the output from the first three services as input to the sink
web service. The workflow engine passes the name of the
service (sink) and operation (compose) to invoke and the
UUID references, which are required as input. The proxy
then moves the data across the network and invokes the
compose operation on the sink service. The output is
again stored locally on the proxy and a UUID reference
generated and passed back to the workflow engine. The
workflow engine can then retrieve actual data from the
proxy when necessary using the returnData operation.

3 WORKFLOW PATTERNS

As with software design patterns, workflow patterns refer
to recurrent problems and proven solutions in the devel-
opment of workflow applications. There is a large body of
workflow patterns research detailing a comprehensive set
of patterns from both a control flow and data flow
perspective, the most prevalent being the work by van der
Aalst and Hofstede et al. [1] and the Service Interaction
Patterns set by Barros et al. [6], a collection of 13 recurring
patterns derived from insights into business-to-business
transaction processing.

Workflows in the scientific community are commonly
modeled as Directed Acyclic Graphs (DAGs), formed from
a collection of vertices (units of computation) and directed
edges. DAGs present a dataflow view, here data are the
primarily concern, workflows are constructed from data
processing (vertices) and data transport (edges). DAGs may
be used to model processes in which information flows in a
consistent direction through a network of processors. The
Genome Analysis and Database Update system (GADU)
[26], the Southern California Earthquake Centre (SCEC) [13]
CyberShake project, and the Laser Interferometer Gravita-
tional-Wave Observatory (LIGO) [28] are all examples of
High Performance Computing applications composed
using DAGs.

OMII-Taverna [25] is an example of a popular tool used
in the life sciences community in which workflows are
represented as DAGs and executed using the service-
oriented paradigm.

This paper focuses purely on optimizing service-oriented
workflows, where services are relatively simple and are not
equipped to handle third-party transfers. For the remainder
of this paper we take inspiration (i.e., patterns, input-output
data relationships, scenarios) from DAG-based workflows
but stress that we are focused purely on optimizing service-
oriented workflows.

3.1 Patterns

From a DAG one can extract a number of isolated workflow
patterns (sequence, fan-in, and fan-out) which will be used
as the basis for performance analysis throughout the
remainder of this paper. It is important to note these
patterns can be considered primitive or isolated patterns,
many isolated patterns can in combination, form a macro-
pattern, e.g., a fan-in followed by a fan-out. This situation
will be addressed when we discuss the Montage application
in Section 7.

DAG-based workflows are not the only possible repre-
sentation for workflows, however, they are used as the basis
for evaluation in this paper as they are commonly used to
represent scientific workflows.

Before we discuss each pattern we introduce the
following mathematical notation which is used to provide
a concrete representation of each pattern:

. Pj : proxy.

. Si : service.

. PðSiÞ : proxy for service Si.

. C
$

i;j
: round-trip communication cost between entities i

and j.

. ~Ci;j : one-way communication cost between entities i
and j.

. n represents the number of services. SFI is the fan-in
service, where all sources are sent, SFO is the fan-out
service, where source data are extracted.

. E : workflow engine.

. TCpat;nckcirc : total communication cost of executing a
workflow pattern (seq, fo, fi—sequence, fan-out, or
fan-in, respectively) in Circulate (circ) or noncircu-
late (nc), i.e., standard orchestration architectures.

A mathematical representation of each pattern is
provided in Fig. 4 and illustrated further by Fig. 5. We
have chosen this method in order to identify generic trends
of recurring patterns, which are both commonplace and
reflect a realistic representation of how workflows are
represented and executed. Complementing the pattern-
based evaluation we also execute an end-to-end application,
discussed in Section 7. With reference to Figs. 4 and 5 each
pattern will now be explained in detail:

3.1.1 Sequential Pattern

This pattern involves the chaining of services together, where
the output of one service invocation is used directly as input
to another, i.e., serially. Data are sent from the workflow
engine to the first service in the chain and returned from the
final service in the chain to the workflow engine.

For the standard orchestration model ((1), phase 1 of

Fig. 5) TCseq;nc involves round-trip communications (C
$

)

between services S1; . . . ; Sn. For the Circulate architecture

440 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 3, JULY-SEPTEMBER 2012



((2), phase 2 of Fig. 5) TCseq;circ is calculated as follows:

initial data are sent one-way (~C) from the workflow engine

E to the first proxy P ðS1Þ, then round-trip (C
$

) between all

proxies and services P ðS1Þ; S1 . . . P ðSnÞ; Sn, one-way (~C)

between n� 1 proxies, and finally one-way (~C) between

the final proxy P ðSnÞ and the workflow engine E.

3.1.2 Fan-in Pattern

The fan-in pattern explores what happens when data are
gathered from multiple distributed sources, concatenated,
and sent to a service acting as a sink. Multiple services are
invoked with a control flow (no data are sent) message
asynchronously, in parallel, data are returned from each
service. Once data have been received from all source
services it is concatenated and sent to the sink service as
input, which in turn returns final output data to the
workflow engine.

For the standard orchestration model ((3), phase 3 of Fig. 5)

TCfi;nc involves one-way (~C) communications between all

sources of data S1 . . .Sn and the workflow engine E, all

source data are then sent round-trip (C
$

) between the

workflow engine and the final sink service SFI .

For the circulate architecture ((4), phase 4 of Fig. 5)

TCfi;circ involves round trip (C
$

) communications between

all source proxies and all source services P ðS1Þ . . .P ðSnÞ,
one-way communication (~C) between all source proxies

P ðS1Þ . . .P ðSnÞ and the sink proxy P ðSFIÞ, once received by

the sink proxy round-trip communication (C
$

) takes place

between the sink proxy P ðSFIÞ and the sink service SFI ,

finally data are sent one-way (~C) back to the workflow

engine E.

3.1.3 Fan-Out Pattern

This pattern is the reverse of the fan-in pattern, here the
output from a single source is sent to multiple sinks. An
initial source service is invoked with a control flow message
(again no actual data are sent), the service returns data as
output. These data are sent, asynchronously in parallel to
multiple services as input, each service returns final data to
the workflow engine.

For the standard orchestration model ((5), phase 5 of

Fig. 5) TCfo;nc involves one-way communication (~C)

between the source service SFO and the workflow engine

E, followed by round-trip communication (C
$

) between the

workflow engine E and all sink services S1 . . .Sn.

For the Circulate architecture ((6), phase 6 of Fig. 5)

TCfo;circ involves round-trip communication (C
$

) between

the source proxy P ðSFOÞ and the source service SFO, one-

way communication (~C) between the source proxy P ðSFOÞ
and all sink proxies P ðS1Þ . . .P ðSnÞ, round-trip commu-

nication (C
$

) between all sink proxies P ðS1Þ . . .P ðSnÞ and all

sink services S1 . . .Sn, finally one-way communication (~C)
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Fig. 5. Experiment setup used for the analytical model and the pattern-
based performance analysis. Data flow in the sequential (first column),
fan-in (second column), and fan-out (third column) patterns for
the centralized architecture using standard services (1, 3, 5) and the
Circulate architecture (2, 4, 6). Control flow messages are omitted. This
example shows four services, each proxy is deployed on the same
server as the service it is invoking.

Fig. 4. Equations modeling the standard orchestration and Circulate case for sequence (1 and 2), fan-in (3 and 4), and fan-out (5 and 6) patterns.
Control flow is omitted.



between all sink proxies P ðS1Þ . . .P ðSnÞ and the workflow

engine E.

4 EXPERIMENTAL SETUP

A number of performance analysis experiments have been
devised in order to observe and analyze the behavior of
various workflow patterns and variables to compare the
Circulate architecture with that of a standard centralized
orchestration model. The following sections describe the
structure of the resulting performance analysis experi-
ments which are based the workflow patterns described in
Section 3.

4.1 Node Size and Network Configurations

In our experimental set up, data flow with no data
transformations (i.e., the output of one method invocation
is the input to another). We use nonblocking asynchronous
communication between the web services, although data
forwarding between proxies occurs after all web services
have finished execution.

For each of the three workflow patterns: sequence, fan-in,
and fan-out, the time taken for the pattern to complete using
centralized orchestration and using the Circulate architec-
ture is recorded (in milliseconds) as the size of the input data
(in Megabytes) is increased. This basic set up is then run
incrementally over a number of workflow node sizes: 4, 8,
and 16 nodes in order to explore the affects of scalability.
Each node size (i.e., 4, 8, or 16) is then run over different
network configurations to explore how network configura-
tion affects the performance of a workflow.

We have selected the following network configurations
(illustrated by Fig. 6) which mimic common scenarios when
composing sets of geographically distributed services:

4.1.1 LAN Experiments

Moving the web services to a relatively uniform network
topology in terms of speed, e.g., a LAN, allows for a
simplified analysis of the two models. In a LAN, it is
expected that the cost of the communication links E! S,
E! P, P! S, and P! P have little variance in terms of
bandwidth. In this case the performance benefit with
respect to the different workflow patterns may be exposed
more readily. We explore this with a LAN configuration
with a local workflow engine (same LAN) and a LAN
configuration with a remote workflow engine (connected
through a WAN).

4.1.2 Internet-Scale Experiments

PlanetLab [9] is a global research network of distributed
servers that supports the development of new network

services. We have heavily utilized this framework in order
to evaluate the performance of the Circulate architecture
across Internet-scale networks. We have subdivided the
pattern-based PlanetLab experiments into three configura-
tions which mimic the typical geographical distribution
patterns found in workflow applications: “National” (all
nodes in the same country), “Continental” (nodes in
different countries on the same continent), and “World-
wide” (nodes spread throughout the globe). Finally, to
demonstrate end-to-end performance, an end-to-end appli-
cation is executed across the PlanetLab framework.

4.2 Experiment Cross Product

The configuration of our experiments mirror that of a
typical workflow scenario, where collections of physically
distributed services need to be composed into a higher level
application, scaling from LAN to Internet-scale network
configurations. In order to create a uniform test environ-
ment, proxies invoke web services with one operation
which inputs and outputs Java byte arrays transferred
using SOAP. The cross product of each workflow pattern,
node size, and network configuration has been executed
100 times (combined standard deviation can be seen on
graphs where a mean performance benefit is reported) over
a set of distributed Linux machines running the WS-
Circulate architecture discussed in Section 2.2. The experi-
ments and graphs (throughout this paper) can be summar-
ized as follows:

1. x-axis displays the size of the initial input file in
Megabytes: for the sequence pattern this displays the
size of data sent to the first service in the workflow,
for fan-in and fan-out this represents the size of data
returned by the first service.

2. For the LAN experiments the size of the initial input
file ranges from 2 to 96 MB with a total of 12 data
points collected. For the Internet-scale experiments
the size of the initial input file ranges from 2 to
64 MB with a total of 10 data points collected. Each
experiment is executed 100 times.

3. The y-axis displays the mean performance benefit.
The mean performance benefit is calculated by
dividing the mean time taken to execute the work-
flow using standard orchestration (i.e., nonproxy,
fully centralized) and dividing it by the mean time
taken to execute the workflow using the Circulate
architecture. For example, a result of 2.0 means that
the Circulate architecture executes a workflow twice
as fast as standard orchestration.

4. Graphs that represent a performance benefit are
shown together with a combined standard deviation
of the two populations: orchestration and Circulate,
represented by:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

stdev� non� circ
mean� non� circ

� �2

þ stdev� circ
mean� circ

� �2
s

: ð7Þ

5 LAN CONFIGURATION

A pool of computers from the University of Edinburgh
Distributed Informatics Computing Environment (DICE)1
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Fig. 6. Configurations from left to right: local LAN, remote LAN, Internet-
scale. Services, proxies, and the workflow engine are always deployed
on separate machines.

1. http://www.dice.inf.ed.ac.uk.



LAN were selected as workflow nodes for these configura-
tions. These machines are all located in the same building
and are connected to the network via a 100 Mbit network
connection. All these machines share the same hardware/
operating environment: Intel Core 2 Duo with 2 GB RAM
running Ubuntu version 7.04. In addition to these matched
machines, similar servers (separate machines) were chosen
to act as the workflow engine, allowing us to explore the
remote orchestration case and the local orchestration case.

5.1 LAN—Remote Orchestration

By moving the workflow engine outside of the LAN
configuration, we can explore workflow engine to web
service ðE! SÞ communication. This reflects a very
common real-world scenario where a particular organiza-
tion provides all of the web services used to compose a
workflow, but these services are being orchestrated
remotely. In particular, this is applicable to cloud comput-
ing scenarios (for example, Amazon Elastic Compute
Clouds2) where services are typically hosted on groups of
colocated machines and where the end user requiring these
services is remote.

Fig. 7a displays the mean performance benefit across each
of the workflow patterns, on a LAN with four nodes, where
all web services are mapped to a single proxy and the
workflow engine is remote from both proxies and services.

As one can observe from Fig. 7a, for all patterns the
Circulate architecture outperforms the standard orchestra-
tion model, i.e., the mean performance benefit is larger than
1 even at low data sizes. The fan-in pattern shows the
greatest benefit.

To justify, as the workflow engine lies outside the LAN
where the web services and proxies are deployed, the E!
S and E! P links can be considered “expensive” WAN
hops. As the proxy is deployed on the same LAN as the web
services it is invoking the P! S link is a less expensive
LAN hop. Within a standard orchestration model, all data
pass through a centralized workflow engine, hence all data
are transferred over the expensive E! S link. Using the
Circulate architecture, most of the processing for each of the
patterns takes place over the less expensive P! S link;
intermediate data are housed within the proxy. Data are
only sent over the expensive E! P link at the start of the
sequence pattern and the end of all patterns.

One can make the following observations from the LAN-
scale experiments.

5.1.1 Patterns

With reference to Fig. 7a, the worst performing pattern in
this scenario was the sequence pattern, however even this
pattern demonstrates the significant advantage of using
the Circulate architecture. At 2 MB, the mean perfor-
mance benefit is just 1.03, at 96 MB this benefit increases
to 2.0. Looking at the best performing pattern, fan-in, at
2 MB the mean performance benefit is 2.0, at 96 MB the
mean performance benefit has risen to 16.8.

5.1.2 Node Size

In order to explore scalability, the same experiment was run
over 8-node and 16-node configurations. One proxy is
assigned to each group of four web services, resulting in
two proxies for the 8-node experiment and four proxies for
the 16-node experiment. As per the previous setup, the
workflow engine is remote from all services and proxies.
Fig. 7b illustrates the mean performance benefit of each of
the node configurations when compared to the centralized
orchestration model for the fan-in pattern. We have selected
the fan-in pattern as it demonstrates the most consistent
improvement in performance.

The Circulate architecture always outperforms the
centralized orchestration model for each of the node
configurations. To justify, as the number of proxies
increases, so does the P! P communication, which adds
a minimal additional cost to the execution of a workflow.
However, this minimal overhead only adds an additional
cost in comparison with using a configuration where all
services share the same proxy. Our scaling experiment
demonstrates that Circulate outperforms traditional orches-
tration for all node sizes in the remote LAN case.

5.1.3 Data Size

As the size of data involved in each of the patterns
increases, the cost of processing the expensive WAN hops
also increases. As the Circulate architecture reduces these
more expensive WAN hops, the benefit of utilizing the
architecture increases in proportion to the size of data
involved in a workflow. To quantify (with reference to
Fig. 7b), at 16 MB the 8-node fan-in pattern’s mean
performance benefit was 1.9, at 96 MB this increased to
6.4. At 16 MB the 16-node fan-in pattern’s mean perfor-
mance benefit was 2.2, at 96 MB this increased to 4.4.
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Fig. 7. Remote LAN configurations.
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5.2 LAN—Local Orchestration

In order to explore the limits of our approach, the workflow
engine is deployed on a computer that is also connected to
the proxies and web services via a network switch. This is a
suitable experimental setup to test the assumption of
communication link equality but does not necessarily reflect
common deployed patterns of web services, normally the
workflow engine is remote.

Fig. 7c displays the mean performance benefit as the data
size increases across each of the three workflow patterns on
a LAN running a local workflow engine, with 4-nodes,
where four web services each share a proxy.

In a LAN environment we make the assumption that the
cost of communication is relatively uniform, therefore the
cost of E! S, E! P, P! S, and P! P can be considered
approximately equal. The Circulate architecture introduces
extra communication links (between P! S) across this
uniform network topology, which in turn degrades the
execution time of a workflow when compared to standard
orchestration. With reference to Fig. 7c the fan-in pattern
demonstrates similar performance to the standard orches-
tration model, while the standard orchestration model
outperforms the fan-out and sequence patterns.

6 INTERNET-SCALE CONFIGURATIONS

Moving the experiments to the PlanetLab configurations
allows the Circulate architecture to be evaluated over
Internet-scale networks. The PlanetLab environment con-
figurations are based on the geographical location of the
nodes, which in turn are used as an indicator of commu-
nication link cost. By grouping the nodes, certain realistic
scenarios can be constructed for the experiments. For
example, by using a group of nodes all located in France,
one can execute a workflow simulating the interactions
between collaborating French universities; such scenarios
are common place in large-scale workflows. The PlanetLab
configurations all use a remote workflow engine, this is a
common feature of scientific workflows, as one can imagine
a scientist in a remote location orchestrating resources from
a number of collaborating institutions.

Due to the variable nature of PlanetLab, node selection
was a complex matter. We ran extensive tests to locate
groups of nodes that we could reliably access throughout
the duration of our experiments. After these preliminary
tests nodes from France, Germany, and the USA were
selected, each nodes are shown in Table 1. Each workflow
pattern was then executed over nodes from Table 1, mashed
up using different geographical network configurations.

The breakdown of each pattern, network configuration, and
mean performance benefit is displayed in Table 2

6.1 National-4-Node

Within the national configuration, four nodes were selected
to deploy the web services, a further node acted as a shared
proxy and the workflow engine was deployed on a final
node that is a separate node from the proxy and services.
The mean performance benefit for the France configuration
is displayed in Fig. 8a, the Germany configuration in
Fig. 8b, and the USA configuration in Fig. 8c.

6.2 Continental-8-Node

In order to separate the nodes further, each workflow pattern
was executed across two continental configurations. The first
was a European set, which contained nodes from both France
and Germany. The second utilized nodes across the USA.
Eight web services were deployed across eight nodes, a
further two nodes acted as proxies for groups of four web
services, a final node acted as a workflow engine that is a
separate node from any of the proxies and services. The mean
performance benefit for the European configuration is
displayed in Fig. 8d and USA-wide configuration in Fig. 8e.

6.3 World Wide-16-Node

The final PlanetLab experiment executed each pattern across
all available nodes in the previous configurations. Sixteen
web services were deployed across 16 nodes, four proxies
were deployed across separate nodes, which manage four
web services each, a final node acted as the workflow engine
that is a separate node from any of the proxies and services.
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TABLE 2
National (4-Node), Continental (8-Node), and World Wide

(16-Node) PlanetLab Mean Performance Benefits

TABLE 1
PlanetLab Node Selection



The mean performance benefit for the world wide config-
uration is displayed in Fig. 8f.

One can make the following observations from the
Internet-scale experiments:

The Circulate architecture always outperformed the
centralized orchestration model. The greatest overall im-
provements in performance were seen on the 4-node
Germany configuration (2.07 overall mean performance
benefit), 8-node Europe configuration (1.87 overall mean
performance benefit), and 4-node USA configuration (1.69
overall mean performance benefit).

6.4 Patterns

If we calculate the mean across all Internet-scale network
configurations (i.e., the four, eight, and 16-node) from
Table 2 the following trends can be observed: the sequence
pattern demonstrated a performance benefit of 1.65, fan-in a
performance benefit of 2.01 and fan-out a performance
benefit of 1.48.

6.5 Data Size

As one can observe from Figs. 8a, 8b, 8c, 8d, 8e, and 8f, the
Internet-scale configurations were more variable than the
LAN experiments. However, the general trend was that as
the data size increased the benefit either improved or
remained relatively constant.

6.6 Node Size

Obtaining general trends on the PlanetLab results was not
as straight forward as the LAN configurations. Unlike the
relatively uniform LAN environment, the performance
across PlanetLab is heavily dependent on the quality of
links utilized and current load of the network (observed

by the error bars in Fig. 8). As we have discovered
PlanetLab links vary radically in quality. For example, the
overall improvement in the 4-node German configuration
(2.07 mean performance benefit) is higher than in the
4-node France configuration (1.36 mean performance
benefit). Analyzing individual runs it was found that
the E! S and E! P communication cost was higher
in the German nodes. As the Circulate architecture
reduces these expensive links, the mean performance
benefit across pattern was lower.

For standard orchestration the quality of the E! S links
is the overall factor affecting performance, for Circulate it is
the quality of the E! P and ! P links. Therefore, one has
to place proxies carefully in order to ensure that the P! P
links are faster than the E! S links, these optimization and
proxy placement strategies are left to future work.

Most promising, however, was that in all cases, when all
workflow patterns were taken into account, the Circulate
architecture always speedup the execution time of a
workflow. This is important as it demonstrates that even
if one pattern is misbehaving, a workflow, which will be
composed of an arbitrary number of patterns will still
experience performance improvements.

7 END-TO-END APPLICATION: MONTAGE

Although the focus of our paper has primarily been on
pattern-based performance analysis, it is important to
demonstrate the Circulate architecture on an end-to-end
application. Fig. 9 illustrates the Montage workflow, a
benchmark in the High Performance Computing community
and representative of a class of large-scale, data-intensive
workflows. Montage constructs custom “science-grade”
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astronomical image mosaics from a set of input image
samples. It illustrates several features of data-intensive
scientific workflows and it can result in large data flow
requirements, intermediate data can be three times the size of
input data.

The Montage workflow is represented as a DAG, each
component of the DAG (along with corresponding input-
output data ratios) is explained as follows:

1. mProject: reprojects an image to the coordinate
system defined in a header file. (output ¼ input)

2. mDiff/mFitPlane: three inputs (one header and two
images) fan-in to the mDiff function, which finds the
difference between the two images, the output is
then passed through the mFitPlane function (usually
executed on the same machine), which fits a plane to
the difference image. Output ¼ 15-20% of a typical
image for each image triplet.

3. mConcatFit: a simple concatenation of the plane fit
parameters from multiple mDiff/mFitPlane jobs into
a single file. fan-in pattern with 18 inputs (from
different resources), which are passed through the
mConcatFit function.

4. mBgModel: models the sky background using the
plane fit parameters from mDiff/mFitPlane and
computes planar corrections for the input images
that will rectify the background across the entire
mosaic. mBgModel is a fan-out pattern, where the
output is distributed to 10 sinks.

5. mBackground/mAdd: the mBackground function
rectifies the background in a single image, output ¼
input. Data from each mBackground computation

are sent to the mAdd function, which coadds a set of
reprojected images to produce a mosaic as specified
in a template header file. This forms a fan-in pattern
with 10 inputs to the mAdd function (output ¼
70-90% the size of inputs put together).

The Montage application (web services and data) along
with a set of proxies were deployed on PlanetLab nodes
spanning the USA. Our deployment maintains the number
of services (i.e., fan-ins and fan-outs), data sizes, and
importantly the input-output relationships of Montage.

Two experiments were performed: first, “single proxy”
where each web service is maintained by its own proxy, and
“shared proxy” where groups of four web services were
maintained by a single proxy. Proxies and services were
scattered across PlanetLab nodes spanning the USA, proxies
were always deployed on a separate machine within the
same domain as the web service it is invoking and the
workflow engine was always remote from both proxy and
web service. This deployment was executed 50 times across
the PlanetLab framework. As with previous experiments the
x-axis represents the size of the input file and 95 percent
confidence intervals are provided for every mean perfor-
mance benefit. A total of 13 data points were collected from
10 to 240 MB. As we are focusing purely on optimizing data
transfer, processing times in both models have not been
taken into account as these remain the same regardless of
the number of services served per proxy.

Fig. 10a illustrates the end-to-end mean performance
benefit of the Montage application using Circulate and
standard centralized orchestration. Fig. 10b illustrates the
mean performance benefit (average across 13 data points
and 50 runs) per phase of the Montage application and
demonstrates how each phase collectively provides an end-
to-end benefit. Phase 1 represents mProject to mFitPlane,
phase 2 mConcatFit, phase 3 mBgModel, and phase 4
mBackground to mAdd.

The end-to-end Montage application resulted in a mean
performance benefit of 6.95 for the single proxy configura-
tion over all 13 data volumes tested.

This benefit increases slightly as the input data size
increased: from an average of 6.4 (30 seconds for orchestra-
tion, 192 seconds for Circulate) at 10 MB to an average of
7.6 (246 seconds for orchestration, 1,869.6 for Circulate) at
240 MB. The shared proxy configuration resulted in a mean
performance benefit of 7.12, again the benefit increased
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Fig. 10. (a) Montage end-to-end performance, (b) Montage individual phases performance, and (c) proxy overhead.

Fig. 9. Montage use-case scenario.



slightly as the data size increased: from 6.5 (24 seconds for
orchestration, 156 seconds for Circulate) at 10 MB to 7.75
(216 seconds for orchestration, 1,674 seconds for Circulate)
at 240 MB. The shared proxy resulted in a marginal benefit
over the single proxy configuration due to reduced data
transfer to and from proxies. With reference to the pattern-
based performance analysis, we confirm that the benefit of
using the Circulate architecture increases when isolated
patterns are placed together to form a larger application.

7.1 Proxy Overhead

Fig. 10c displays the average time (as a ratio: nonproxy
centralized time divided by Circulate elapsed time) it takes
to make a single invocation to a vanilla web service and
obtain the result versus an invocation to a proxy that
invokes the service on the orchestration engines behalf and
returns a reference to its data. The workflow engine is
remote to both proxy and service. Results under the
horizontal line indicate the vanilla approach is optimal,
results over the line show a benefit of using the Circulate
architecture.

Circulate effectively separates out the control flow and
data flow messages from one another; the workflow engine
invokes proxies with smaller control flow messages and
proxies pass larger data flow messages directly to one
another. Although workflow languages such as BPEL do
not explicitly separate out these two types of messages it is
useful to think of data transfer in this way. The proxy
overhead experiment demonstrates that Circulate is only
suited to workflows where large quantities of intermediate
data flow between services in a workflow. From the results
we conclude that due to the overhead of the proxy, when
dealing with input data sizes of less than �100K of data the
Circulate architecture offers no performance benefit to web
services. Anything over �100K of data the proxy begins to
speedup the execution time of the invocation due to the
storage of the results within the proxy.

8 RELATED WORK

This section discusses all related work from the literature,
spanning pure choreography languages, enhancements to
widely used modeling techniques, i.e., BPMN, decentra-
lized orchestration, data flow optimization architectures,
and Grid toolkits.

8.1 Choreography Languages

For completeness it is important to discuss the current state
of the art in choreography techniques. There are an
overwhelming number of pure orchestration languages.
However, relatively few targeted specifically at choreogra-
phy, the most prevalent being WS-CDL [5], BPEL4Chor
[12], and Let’s Dance [30].

There are even fewer complete implementations of
choreography languages, this means that choreography
techniques are rarely deployed in practice. For example,
there are only two documented prototype implementations
of the WS-CDL specification. WS-CDL+, an extended
specification [18] has been implemented in prototype form,
although only one version, version 0.1 has been released. A
further partial implementation [14] of the WS-CDL

specification is currently in the prototype phase. The other
widely known implementation is pi4soa,3 an Eclipse plug-
in that provides a graphical editor to compose WS-CDL
choreographies and generate from them compliant BPEL.
Maestro [11] is an implementation of the Let’s Dance
language and supports the static analysis of global models,
the generation of local models from global ones, and the
interactive simulation (not enactment) of both local and
global modes. In the BPEL4Chor space, a web-based
editor4 allows engineers to graphically build choreography
models.

8.2 Techniques in Data Transfer Optimization

There are a limited number of research papers that have
identified the problem of a centralized approach to service
orchestration.

The Flow-based Infrastructure for Composing Autonomous
Services or FICAS [23] is a distributed data-flow architecture
for composing software services. Composition of the
services in the FICAS architecture is specified using
the Compositional Language for Autonomous Services
(CLAS), which is essentially a sequential specification of
the relationships among collaborating services. This CLAS
program is then translated by the build-time environment
into a control sequence that can be executed by the FICAS
runtime environment.

FICAS is intrusive to the application code as each
application that is to be deployed needs to be wrapped
with a FICAS interface. In contrast, our proxy approach is
more flexible as the services themselves require no
alteration and do not even need to know that they are
interacting with a proxy. Furthermore, our proxy approach
introduces the concept of passing references to data around
and deals with modern workflow standards.

Service Invocation Triggers [7], or simply Triggers are also
a response to the bottleneck problem caused by centralized
workflow engines. Triggers collect the required input data
before they invoke a service, forwarding the results directly
to where these data are required. For this decentralized
execution to take place, a workflow must be deconstructed
into sequential fragments that contain neither loops nor
conditionals and the data dependencies must be encoded
within the triggers themselves. This is a rigid and limiting
solution and is a barrier to entry for the use of proxy
technology. In contrast with our proxy approach, because
data references are passed around, nothing in the workflow
has to be deconstructed or altered, which means standard
orchestration languages such as BPEL can be used to
coordinate the proxies.

In [24] a similar (pure choreography) approach is also
proposed. Authors introduce a methodology for transform-
ing the orchestration logic in BPEL into a set of individual
activities that coordinate themselves by passing tokens over
shared, distributed tuple spaces. The model suitable for
execution is called Executable Workflow Networks
(EWFN), a Petri nets dialect. This approach utilizes a pure
choreography model which has many additional modeling
and enactment problems associated with it, due primarily
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to the complexity of message passing between distributed,
concurrent processes.

Data caching techniques in Grid workflows are proposed
in [8]. This architecture caches “virtual data” of previous
queries, so any overlapping queries and processing do not
have to be repeated. The Circulate architecture stores data
at a proxy so that it can be transferred directly to the next
stage of the workflow, avoiding costly network hops back to
the workflow engine. It is then up to the user to clean up
stored data afterwards, by using the methods discussed in
Section 2.2. The automated data caching techniques
proposed could be applied to the Circulate proxies to
further enhance performance.

8.3 Third-Party Data Transfers

This paper focuses primarily on optimizing service-oriented
workflows, where services are: not equipped to handle
third-party transfers, owned and maintained by different
organizations, and cannot be altered in anyway prior to
enactment. For completeness it is important to discuss
engines that support third-party transfers between nodes in
task-based workflows.

Directed Acyclic Graph Manager (DAGMan) [10] submits
jobs represented as a DAG to a Condor pool of resources.
DAGMan removes the workflow bottleneck as data are
transferred directly between vertices in a DAG, however,
focuses purely on Condor bases Grid jobs and does not
address the bottleneck problems associated with orchestrat-
ing service-oriented workflows.

Triana [27] is an open-source problem solving environ-
ment. It is designed to define, process, analyze, manage,
execute, and monitor workflows. Triana can distribute
sections of a workflow to remote machines through a
connected peer-to-peer network.

OGSA-DAI [19] is a middleware product that supports
the exposure of data resources on to Grids. This middle-
ware facilitates data streaming between local OGSA-DAI
instances. Our architecture could be implemented on this
platform to take advantages of its streaming model.

Grid Services Flow Language (GSFL) [21] addresses some of
the issues discussed in this paper in the context of Grid
services, in particular services adopt a peer-to-peer data flow
model. However, individual services have to be altered prior
to enactment, which is an invasive and custom solution,
something that is avoided in the Circulate architecture.

9 CONCLUSIONS

As the number of services and the size of data involved in
workflows increases, centralized orchestration techniques
are reaching the limits of scalability. In standard orchestra-
tion: all data passes through a centralized engine resulting in
unnecessary data transfer, wasted bandwidth and the engine
to become a bottleneck to the execution of a workflow.
Decentralized choreography techniques, although optimal
in terms of data transfer are far more complex to build due to
message passing between distributed, concurrent process
and in practice and rarely deployed.

This paper has presented the Circulate architecture; a
centralized orchestration model of control with a peer-to-
peer choreography model of data transfer. This extra

functionality is achieved through the deployment of a

lightweight proxy that provides a gateway and standard

API to web service invocation. Importantly, proxies can be

deployed without disrupting current services and with

minimal changes in the workflows that make use of them.

This flexibility allows a gradual change of infrastructures,

where one could concentrate first on improving data

transfers between services that handle large amounts data.
An open-source web services implementation, WS-

Circulate, served as the platform for our evaluation across

LAN and Internet-scale configurations through the Plane-

tLab network. Through our experimentation we have

demonstrated that by reducing data transfer, the Circulate

architecture significantly speeds up the execution time of

workflows across common workflow patterns and network

topologies. Moreover, it scales with data size and common

workflow topologies, and consistently outperforms centra-

lized orchestration techniques. The Montage DAG demon-

strated that the benefit of using the Circulate architecture

increases when isolated patterns are placed together to

form a larger application.
Future work includes the following challenges:

. Architecture Evolution. Although this paper has dis-
cussed a web services-based implementation, Circu-
late is a general architecture and mappings could be
provide to multiple back end technologies, e.g.,
Condor [22]. This would allow multiple technology
sets to be optimized and orchestrated via a standard
workßow language and workflow engine.

. Compressing Web Service Content. Techniques, e.g.,
gzipped SOAP5 have been proposed to reduce the
quantity of data transferred between web services.
We plan to integrate such techniques into the
Circulate architecture.

. Proxy Placement. This architecture also opens up a
rich set of additional optimizations with respect to
dynamic proxy deployment, i.e., load balancing
depending on network traffic.

. Data Transformation. A common workflow task is to
change the output data from one service into a
slightly different format to use as input into another
service, this process is known as Shimming. This will
affect the performance of a workflow further as it
introduces an extra service into the workflow chain.
If a shim is implemented as a custom transformation
web service this step will simply be included in the
workflow specification. Future work includes im-
plementing a shim loader component, where custom
shims can be uploaded to the proxy, allowing shims
to be performed locally at a proxy, avoiding the
introduction of further network hops.
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