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Abstract—This paper introduces the Multiagent Protocols (MAP) Web service choreography language and demonstrates how service

choreographies can be specified, verified, and enacted with a comparatively simple process language. MAP is a directly executable

specification, services do not have to be preconfigured at design-time. Instead, a choreography, specified in MAP, can be sent

dynamically to a group of distributed peers to execute at runtime. Furthermore, MAP is based on a formal foundation, this allows model

checking of the choreography definition prior to live distribution and enactment. A motivating scenario, taken from the AstroGrid

science use-cases, serves as the focal point for the paper and highlights the benefits of choreography, through data flow optimization

and lack of centralized server. The MAP formal syntax and model checking environment are discussed in the context of the motivating

scenario, along with MagentA, an implementation of MAP which provides a concrete, and open-source framework for the enactment of

distributed choreographies. MAP is evaluated by demonstrating the languages conformance to the Service Interaction Patterns, a

collection of 13 recurring workflow patterns.

Index Terms—Workflow, Web service choreography.
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1 INTRODUCTION

SERVICE-ORIENTED architecture (SOA) is an architectural
approach for the implementation and delivery of loosely

coupled distributed services [34]. Although the concept of
service-oriented architecture is not a new one, this approach
has seen wide spread adoption through the Web services
approach, which has a set of basic, core standards (XML,
WSDL, SOAP, etc.) to facilitate service interoperability.

The core standards do not provide the rich behavioral

detail which describes the role an individual service plays as

part of a larger, more complex collaboration. This collabora-

tion is often achieved through the use of workflow

technologies. As defined by the Workflow Management

Coalition [21], a workflow is the automation of a business

process, in whole or part, during which documents,

information or tasks are passed from one participant (a

resource; human or machine) to another for action, accord-

ing to a set of procedural rules. Workflow can be described

from the view of a single participant using orchestration or

from a global perspective using choreography.
Service orchestration enables Web services to be com-

posed together in predefined patterns, described using an

orchestration language and executed on an orchestration engine.

Orchestrations can span multiple applications and/or

organizations and result in long-lived, transactional pro-

cesses. Services themselves have no knowledge of their

involvement in a higher level application, and therefore,

need no alteration before enactment. Importantly, service
orchestrations are described from the view of a single

participant (which can be another Web service), and therefore,
a central process always acts as a controller to the involved
services. Orchestration languages explicitly describe the
interactions between Web services by identifying messages,
branching logic, and invocation sequences. The Business

Process Execution Language (BPEL) [36] is an executable
business process modeling language and the current de
facto standard way of orchestrating Web services. BPEL has
broad industrial support from companies such as IBM,
Microsoft, and Oracle with concrete implementations.

Service choreography, on the other hand, is more
collaborative in nature. A service choreography is a descrip-
tion of the peer-to-peer externally observable interactions that
exist between services; therefore, choreography does not rely
on a central coordinator. A choreography model describes
multiparty collaboration and focuses on message exchange;
each Web service involved in a choreography knows exactly
when to execute its operations and with whom to interact. A
choreography definition can be used at design-time to
ensure interoperability between a set of peer services from
a global perspective, meaning that all participating services are
treated equally, in a peer-to-peer fashion.

There are two key approaches to modeling choreogra-
phies: interaction models and interconnection models. Interac-
tion models use atomic interactions as the basic building
blocks, and control and data flow are defined between them
from a global perspective. Interconnection models, on the
other hand, define control flow on a per participant basis.
Corresponding send and receive activities are connected
through a message flow, jointly representing interactions.
For a detailed discussion of the differences, see in [18].

The Web Services Choreography Description Language

(WS-CDL) [27] is a language to specify interaction models.
More specifically, it is an XML-based language that can be
used to describe the common and collaborative observable
behavior of multiple services that need to interact, in order to
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achieve a shared goal. WS-CDL is a W3C Candidate
Recommendation.

To conclude, orchestration differs from choreography in
that it describes a process flow between services from the
perspective of one participant (centralized control), a
bottom-up approach to design. Choreography, on the other
hand, tracks a sequence of messages involving multiple
parties (decentralized control, no central server), where no
one party truly owns the conversation, a top-down approach
to design, and an agreement between a set of services as to
how a given collaboration should occur.

This paper introduces the Multiagent Protocols (MAP)
Web service choreography language based on a formal
foundation, �-calculus. MAP choreographies can be speci-
fied, verified through model checking, and enacted over a
distributed peer-to-peer network. Cycling through the
phases is supported, adding flexibility into the design
process. Each of these phases are discussed in detail in the
context of a motivating scenario taken from the AstroGrid
science use-cases.

1.1 Motivating Scenario—Calculating Redshift

At this point, in order to put our motivation and problem
statement into perspective, it is useful to consider a
motivating scenario. The Redshift scenario is taken from
the AstroGrid1 science use-cases and involves retrieving
and analyzing large-scale data from multiple distributed
resources. This scenario will be addressed throughout the
remainder of this paper.

Photometric Redshifts use broadband photometry to
measure the Redshifts of galaxies. While photometric
Redshifts have larger uncertainties than spectroscopic
Redshifts, they are the only way of determining the
properties of large samples of galaxies. This scenario
describes the process of querying a group of distributed
databases containing astronomical images in different
bandwidths, extracting objects of interest and calculating
the relative Redshift of each object.

The scenario represents a workflow and begins with a
scientist inputting the right ascension (RA) and declina-
tion (DEC) coordinates into the system, which define an
area of sky. These coordinates are used as input to three
remote astronomical databases; no single database has a
complete view of the data required by the scientist, as
each database stores only images of a certain waveband.
At each of the three databases, the query is used to extract
all images within the given coordinates which are
returned to the scientist. The images are concatenated
and sent to the SExtractor [9] tool for processing.
SExtractor scans each image, in turn, and uses an
algorithm to extract all objects of interest (positions of
stars, galaxies, etc.) and produces a table for each of the
wavebands containing all the data. A cross matching tool
is then used to scan all the images and produce one table
containing data about all the objects of interest in the sky
in the five wavebands. This table is then used as input to
the HyperZ2 algorithm which computes the photometric
Redshifts and appends it to each value of the table used
as input. This final table consists of multiband files

containing the requested position as well as a table
containing for each source all the output parameters from
SExtrator and HyperZ, including positions, magnitudes,
stellar classification, and photometric Redshifts and con-
fidence intervals; the final table is returned to the user.

1.2 The Case for Choreography

The majority of workflow research has focused on design-
ing languages for implementing service orchestrations from
the view of a single participant, where control and data flow
pass through a centralized server. There are a plethora of
orchestration frameworks which will automate these tasks,
examples can be seen in the Business Process Modeling
community through BPEL and life sciences community
through Taverna [33].

Choreography, although an established concept is a less
well researched and implemented architecture. In practice,
the design processes and execution infrastructure for
service choreography models are inherently more complex
than orchestration; decentralized control brings a new set of
challenges which are the result of message passing between
distributed asynchronous, concurrent processes. However,
although more complex, there are a number of arguments
for adopting choreography.

Design argument. From a software design perspective,
orchestration is suitable when the goal is to build individual
services or to service-enable existing applications. However,
during the early phases of service design, the emphasis lies
not on building individual services but rather on how
groups of services work together, by identifying collections
of potential services and understanding and analyzing their
interactions; at this early stage in the design process,
engineers require a global view of how Web services
interact with one another; choreography provides just these
tools and is a description of multiparty collaboration.

Unbiased argument. Choreography is an unambiguous
way of describing the relationships between services in a
global peer-to-peer collaboration, without requiring orches-
tration at all. Each party takes an equal, predefined, and
preagreed role in the choreography, this removes the
scenario where businesses are interacting over a shared
task but one organization has control over another by
orchestrating their services.

Scalability argument. Centralized control through an
orchestration engine is a valid solution for scenarios found
in e-Commerce, where relatively small quantities of inter-
mediate data (when output from one service invocation is
directly, with no alteration, used as input to another) are
moved between services in a workflow. However, centra-
lized servers make less sense when dealing with data
centric workflows (GBs/TBs), common to scientific applica-
tions. Passing large quantities of intermediate data through
a centralized orchestration engine results in unnecessary
data transfer, wasting bandwidth, overloading the engine,
and decreasing the performance of a workflow. Further-
more, the orchestration engine becomes a single point of
failure for the execution of a workflow.

Fig. 1a represents the motivating scenario where the
involved services are orchestrated, both control and data
flow pass through the centralized workflow engine. Each
of the three astronomical databases are queried and return
100 Mb to the orchestration engine, these data (300 Mb) are
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combined and sent to the SExtractor and cross matching
tool (represented as Tools), the output of which (100 Mb) is
returned to the orchestration engine and sent again as
input to the HyperZ application. Finally, HyperZ computes
the Redshift and tags the extra data to the input, returning
120 Mb to the orchestration engine. In order to enact the
scenario a total of 920 Mb of data flow through the system.

By adopting a choreography model, the output of a
service invocation can be passed directly (with some
control flow between the services, omitted in Fig. 1) to
where it is required as input to the next service,
represented in Fig. 1b. As data do not have to be passed
through a centralized engine, the choreography approach
involves a total data transfer of 520 Mb, assuming that no
data transformation (i.e., shims) takes place and the final
output needs to be sent to the scientist. Using choreogra-
phy, the total data transfer needed to enact the workflow is
400 Mb less when compared to orchestration.

1.3 Paper Contributions

This paper presents a Web services choreography language,
MAP. MAP is an implementation of interconnection
choreography models and is derived from process calculus,
specifically, the �-calculus [32], see [37] for full details. It is
important to note that we are not pitching MAP as a
replacement to alternative specifications, such as WS-CDL.
Rather this paper aims to demonstrate how service
choreographies can be specified, verified, and enacted with
a comparatively simple process language. The key con-
tributions of this paper are summarized as follows:

Loosely coupled choreography interface. The Web
Services Description Language (WSDL) specification pro-
vides a standardized interface description language to
expose application code to a network, describing atomic,
and low-level functions. WSDL was deliberately designed
to be simple and lightweight and is a contributing factor to
the success of Web services. However, WSDL does not
provide the rich behavioral detail that describes the role a
service plays as part of a larger, more complex collabora-
tion. To enable Web services to collaborate autonomously,
without centralized control, an extra layer of functionality, a
choreography interface needs to be added to the stack.

In MAP, this extra functionality is achieved through the
installation of a peer which sits in front of a service or group
of services. Peers provide a choreography interface, exposed
via WSDL, accessible, therefore like any other Web service.
A peer is decoupled from the Web service definitions(s), by
this we mean that individual Web services do not have to
altered prior to enactment and services themselves require
no knowledge that they are taking part in a more complex

collaboration. A peer can be installed on the same server,
domain, network, or externally from the Web services it is
invoking. However, the optimal configuration in terms of
data flow is that the communication between a peer and a
Web service is local, i.e., not transferred over a Wide Area
Network (WAN). Fig. 2 illustrates this concept using the
Redshift scenario as an exemplar. In Fig. 2a, peers and
services reside on the same server as one another; in Fig. 2b,
the configuration is mixed, the Radio, Infra, and X-Ray peers
are installed on separate servers but the Tools and Hyper
peers sit on the same server.

Executable choreography language. MAP is an execu-
table choreography language with multiparty (more than
two partners) support. Peers act as blank canvases and do not
have to be preconfigured with a particular choreography
definition in advance at design-time. Instead, a choreogra-
phy definition (defined in MAP) can be sent over the network
to a group of peers dynamically, e.g., a choreography
specifying an auction can be uploaded to a group of peers
to enact, once terminated the same set of peers can be sent a
completely different choreography specifying, for example, a
business transaction. This provides a flexible solution and
allows choreography definitions to be uploaded to a group of
peers at runtime for execution. Even though MAP is a
relatively simple language, this paper demonstrates how it
still conforms to 12 out of the 13 Service Interaction Patterns, a
set of recurring workflow patterns.

Verification through Model Checking. Building chor-
eographies is a complex task, even for an experienced
engineer. Asynchronous service choreography introduces
nondeterminism into the system which causes a number of
potential problems such as synchronization, fairness, and
deadlocks. MAP is a directly executable specification based
on a formal foundation, allowing us to provide a translation
mechanism from MAP to PROMELA, the input of the SPIN
model checker. Model checking allows verification of the
choreography prior to enactment.

Open-source implementation. MAP is not merely a

theoretical framework, a concrete implementation and

framework for the enactment (not simulation) of distributed

choreographies is provided, available as an open-source

project. This implementation is based on Java, Web services,

and XML technologies. Furthermore, it has been successfully

applied to enact real choreographies on several e-Science

projects.
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Fig. 2. Redshift scenario. (a) A configuration where all peers reside on
the same server as the Web services they are invoking. (b) A mixed
configuration, i.e., some peers are remote.

Fig. 1. Redshift scenario—(a) orchestration and (b) choreography.



1.4 Paper Overview

The remainder of this paper is structured as follows.
Section 2 discusses the MAP syntax in detail and describes
how a choreography is built from a set of interacting peers.
Section 3 introduces the protocol methodology which
describes the tasks involved with taking a software
specification and implementing a choreography in MAP.
We illustrate the methodology through example, by
providing a MAP implementation of the motivating Red-
shift scenario. Model Checking techniques are introduced
which allow validation of a choreography before deploy-
ment. Section 4 describes MagentA, a Java/XML/Web
services framework for enacting choreographies specified in
MAP. Section 4.1 discusses how MagentA enacts a
choreography across a group of distributed peers, i.e., peer
location, peer routing, etc. Section 5 benchmarks MAP by
discussing MAPs compliance to the set of Service Interac-
tion Patterns, a type of Design Pattern for the workflow
community. Section 6 discusses all choreography related
work. Finally, Section 7 concludes the paper and discusses
in context how MAP is differentiated from existing
choreography solutions.

2 MULTIAGENT PROTOCOLS (MAP)

The syntax of MAP is shown in Fig. 3. We note that MAP is
only intended to express Web service choreographies and is
not intended to be a general purpose programming
language. Where examples are given, variables are repre-
sented by $, constants by !, and role types by %. For
readability throughout the examples, constants are also
used to abstract the details from Web service definitions,
e.g., !S1 contains the relevant PortType, OperationName,
etc. Web Service definitions are distinguishable from other

constants as they are always written in CAPITALS. Protocol

code is numbered and referenced throughout the text. To

highlight message passing, lines containing a send or

receive action are marked in bold font. Protocol code in

the main body of text is marked up using the true type

font. For readability, no type definitions have been included

in the MAP protocols.

2.1 Choreography: A Protocol, Roles, and Peers

A choreography in MAP is specified through a protocol,

which is uniquely named n. A protocol is broken down into

a number of distinct roles which peers adopt. A protocol can

be thought of as a bounded space in which a group peers

interact on a single task. MAP protocols add a measure of

security, in that peers which are not relevant to the

choreography are excluded from taking part in the

interaction. We assume that a MAP protocol places a

barrier on the peers such that enactment cannot begin until

all the peers have been instantiated.
The concept of a role is central to our definition. In MAP,

each peer is identified by both a unique name p and a role

r. Peers are uniquely named, but must be assigned a role

which is specified in the protocol definition. The role of a

peer is fixed until the choreography has terminated and

determines which parts of the protocol the peer will follow.

Peers can share the same role, which defines them as having

the same capabilities, i.e., the same interface. Roles are

useful for grouping similar peers together, for example, we

may wish to interact with a large number of peers, all with

the same interface. Roles also allow us to specify multicast

communication in MAP, for example, we can broadcast

messages to all peers of a specific role.
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2.2 Roles Defined through Methods

A role’s behavior is defined by a set of Methods {M}, which
can optionally take a list of Terms as arguments �ðkÞ. Terms
are the objects of manipulation in MAP and are defined as
either a wildcard _, a peer type (unique peer name) (p), a
role type (unique role name) (r), a constant (c), or a
variable (v). Variables are bound to terms by unification
which occurs in the invocation of Web services, the receipt
of messages, or through recursive method invocations,
discussed later in the Section. Constants and variables are
assigned types � to ensure that they are treated consistently.

Types � are defined through a peer type (ptype), which
is a unique peer name and equivalent to p, or a role type
(rtype), a unique role name and equivalent to r. Peer types
and role types are useful when storing the unique name of
peer or role locally for reference later in the protocol
enactment. The final type is the rpctype, a type which
conforms to the standard set of JAX-RPC support types.3

This allows peers to store, for example, an Array of Strings.
Methods are constructed from an Operation Set op,

which enforce control flow and a set of actions �, which
allow the peers to send and receive messages to one another
and invoke third part Web services. Actions can fail (e.g.,
failure to receive an incoming message, failure to invoke a
Web service, etc.), failure of actions causes backtracking of
the protocol.

2.3 Web Service Invocations

The action set first consists of the service action which
allows peers to synchronously call Web services directly
from within the protocol code. A Web service ws is
specified using a list of configuration pairs defðconfigðkÞÞ
which are generic hname; valuei tuples used to define the
details of service invocations, for example, the WSDL,
PortType, etc. Multiple ws definitions can be used as the
first parameter to a service. The first ws definition is used
as the default service to invoke, the remainder act as backup
services, called in the event that a fault arises with the first,
although more dynamic solutions can be encoded into the
protocol, i.e., a registry lookup returning a functionally
equivalent service. This definition(s) along with a list of
input parameters �ðlÞ are used to invoke the required
external service, binding any output to protocol variables
�ðkÞ. If exceptions are raised, the parameters are bound to
the fault terms �ðmÞ.

2.4 Message Passing

Communication between peers is performed by message
passing, defined as performatives �, i.e., message types. By
performatives, we refer to a common format for the
interchange of messages between agents/peers, for exam-
ple, the Foundation for Intelligent Physical Agents (FIPA)
Agent Communication Language (ACL) [1]. Messages take a
list of terms as input �ðkÞ. The send and receive actions
contain two arguments �ð1Þ and �ð2Þ and can be configured in
a number of ways:

Specific peer, specific role. If the first parameter
contains a peer type and the second parameter contains a
role type. For example, request($var1) ) peer($p1,

%role1) would send the message of performative type
request containing $var1 to the peer $p1 who has

adopted the role %role1. This feature is useful for sending
messages to specific peers (who are known in advance or
looked up at runtime), e.g., to maintain a long-running,
consistent dialogue.

Specific peer, any role. If the first parameter contains a
peer type and the second parameter contains a wild card.
For example, request($var1) ) peer($p1, _) sends
a message of performative type request directly to the
peer represented by the variable $p1.

Any peer, specific role. As there is the possibility that
many peers have adopted the same role, a useful feature is
the ability to send and receive messages from any peer who
has subscribed to a particular role. This is achieved if the
first parameter contains a wildcard and the second para-
meter contains a role type. For example, request($var1)
) peer(_, %role1) would send the message of
performative type request to any peer who has adopted
the role %role1. This allows an engineer to specify
multicast communication in MAP.

Any peer, any role. If both parameters are wild cards: _,
for example, request($var1) ) peer(_, _).

The semantics of message passing correspond to non-
blocking, reliable, and buffered communication. Sending a
message succeeds immediately if a peer matches the
definition, and the message will be stored in a buffer on
the recipient. Receiving a message involves an additional
unification step. The message supplied in the protocol
definition is treated as a template to be matched against a
message in the buffer. A unification of terms against the
definition peer(�ð1Þ; �ð2Þ) is performed, where �ð1Þ is
matched against a peer type and �ð2Þ to the role. If the
unification is successful, variables are bound based on the
content of the message �ðkÞ and stored locally to the peer, for
further use in the protocol. Sending will fail if no peer
matches the supplied terms, and receiving will fail if no
message matches the template defined in the protocol. Send
and receive actions complete immediately (i.e., nonblocking)
and do not delay a peer.

2.5 Control Flow

Control flow in a protocol can be enforced in three ways.
First, the sequence operator op1 then op2 evaluates op2 only
if op1 did not contain an action that failed, otherwise it is
ignored. The choice operator op1 or else op2 handles
failure in the protocol and evaluates op2 only if op1

contained an action that failed. MAP includes backtracking,
such that the execution will backtrack to the nearest or
operator when a failure occurs. The parallel operator op1

par op2 executes op1 and op2 in parallel. The parameter
semantics of MAP are call-by-name. The operations in MAP
are normally evaluated in strict left-to-right order. How-
ever, the precedence of the operations can be explicitly
defined using parenthesis (op).

A waitfor loop allows repetition of parts of the
protocol and will be repeatedly executed upon failure.
The loop will terminate when the body succeeds. A
waitfor loop can also include a timeout condition which
is triggered after a certain interval, tmax has elapsed. tmax
is specified in seconds and armed once the loop begins. If a
loop times out, then the actions contained within the
timeout body will be executed, this includes the empty
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action �. Alternatively, the optional imax value can be set

with an integer number, indicating how many times the

loop will iterate; imax is not set by default. Repetition has

been included in the language definition first because

receive actions are commonly wrapped with a waitfor

loop in order to synchronize the message passing between

peers. Second, timeouts allow compensation actions to be

defined as they are only executed if the loop times out, for

example, what protocol code to execute if a message (which

was expected) did not arrive. A recursive method invoca-

tion is achieved through the call operator. Calls are

performed by pattern matching (Prolog-style), and the first

argument in the pattern is the method name.

3 MAP EXAMPLE—REDSHIFT SCENARIO

The protocol methodology describes the task of writing a

protocol to coordinate multiple, concurrent peers. The

methodology is iterative and an engineer can move between

phases until a working system is built that meets the

original specification. The methodology is detailed in the

following Sections and implements the motivating Redshift

scenario detailed in Section 1.1.

3.1 Define Role Set

Role types specify a pattern of computational behavior

which a peer can adopt. The first task an engineer must

perform is to break the initial specification into a number of

role types which together define a protocol and implement

a choreography. This could be a single role, or multiple

roles which are expected to interact as part of a more

complex choreography.
Returning to our motivating scenario discussed in

Section 1.1, the following roles are defined: The user role

coordinates the activities of the other peers, receives input,

and sends output to the physical user (i.e., a scientist, etc.)

grounded in this scenario; the corresponding MAP code is

shown in Fig. 5. The extract role retrieves and formats

data from a number of distributed astronomical databases,

represented in MAP in Fig. 6. Finally, the tools and

hyperz roles manage groups of computational services,

such as the cross matching tool and Redshift analysis,

represented in MAP in Fig. 7.

3.2 Define Role Interactions

If the specification has been broken down into multiple role

types, an engineer must begin to define the performative

(message type) set and specify the pattern of interaction

(sending and receiving) between the roles within the

protocol. The sending and receiving actions can (if

necessary) be sugared with control flow (then, or, par,

etc.). Fig. 4 is an UML Sequence diagram representing the

message passing between the peer roles, performatives and

parameters are presented in each of the messages.

3.3 Define Role Behavior

Once a set of roles have been defined and the interactions

between them is coherent, an engineer must fill in the role

type definitions. Each role is broken down into a group of

methods, making use of the remainder of the action set

and control flow operators. Engineers must consider how

roles connect to any external services, taking into account

input and output parameters along with any fault

information, how to enforce reliability, etc. A MAP

implementation of the peer roles are represented in Figs. 5,

6, and 7. These protocols implement the role interactions

illustrated in Fig. 4.
With reference to Fig. 4 and the corresponding MAP

syntax, the following pattern of interaction takes place. The

user role enters the main method and immediately enters

a waitfor loop, it is waiting for a message of performative

type request (line 4 in Fig. 5) containing two parameters

from any peer subscribing to any role, this is indicated by

the wildcard in the second parameter. Once a message

matching, this template is received the unique name of the

peer $rp and the coordinates $ra and $dec are bound to
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local variables. Using the newly received coordinates
(corresponding to an area of sky) a call to an external
Web service is made in order to obtain a list of astronomical
databases (line 5 of Fig. 5). The definition of the registry
Web service is used as the first parameter to the service

operator and the remaining three parameters form the
corresponding input, radio !r, infrared !i, and X-ray !x,
i.e., we are interested in extracting data from all sources.
The results of the service invocation are bound to the local
variable $peers which represents a list of peers managing
databases containing radio, infrared, or x-ray astronomical
images. A second service call is made in order to locate a
suitable peer who has subscribed to the tools role. Once
completed, the call operator is called on the method

uloop (line 7 of Fig. 5) passing in as parameters the RA and
DEC coordinates $ra, $dec, list of available peers
$peers, the unique name of the requesting peer $rp and
the unique name of the tools peer $tools. Control passes
to the uloop method which retrieves the head and tail of
the peers list through a built in language function call Next.
A message of performative type request (line 14 of Fig. 5)
is sent to the peer represented by the newly retrieved head
of the list (indicated by the first parameter) which is
subscribed to the role extract (indicated by the second
parameter). In this case, the peer indicated by $h is
determined by a runtime lookup and has not been statically
coded into the protocol. The uloop method will recur-
sively iterate until the emptylist fault is thrown; at this
point, the or else branch will be executed and the uwait
method will be called (line 16 of Fig. 5).

The extract peer enters the main method and
immediately waits for a message of performative type
request; notice that the receive on the extract peer (line
4 of Fig. 6) matches the send on the user peer (line 14 of
Fig. 5). Once the peer receives the message, the variables
are bound locally and an invocation to the eloop method

is made. A call to a registry is made to obtain a physical
resource (i.e., database) the peer is managing. Once a

source is located, a service invocation is made (line 12 of

Fig. 6) passing in the RA and DEC coordinates as

parameters, the output (in this case a set of images) is

bound to the local variable: $result and sent directly to

the tools peer for processing (line 13 of Fig. 6). By sending

the results directly to the tools peer, the intermediate

results do not have to be sent via the user, effectively

avoiding a network hop. The eloop method iterates until

the service invocation throws an emptylist fault indicat-

ing that there are no more resources available for query.

The tools peer is waiting for two types of message, either

store (line 4 of Fig. 7) or request (line 7 of Fig. 7),

divided with an or else control flow operator. This

feature allows a peer to execute sections of a protocol

depending on which type of message it receives and which

role the sender is subscribed to.
Messages of performative type store are sent from the

extract peer to the tools peer in order to house the data

before processing begins, notice that again the receiving

signature (line 4 of Fig. 7) matches the sending signature

(line 13 of Fig. 6). Once a message of type store is received,

the store method is called passing in the actual data and

the unique name of the recipient peer as input. Control

passes to the store method, an ID is generated and the

intermediate data are stored at the peer through two Web

service invocations. Once complete, the corresponding

unique identifier is passed back to the extract peer that

sent the request, indicated by the use of the $rp variable in

the first parameter (line 15 of Fig. 7). Control then passes

back to the main method which restarts the peer by

recursively invoking the main method (line 6 of Fig. 7).
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At this point, the extract peer is waiting for responses
in the ewait method. Once it receives a message of
performative type reply from a peer matching the unique
name represented by the tools variable, it is forwarded
back to the user peer (lines 19 and 20 of Fig. 6), represented
by $rp. In order to wait for all messages, a recursive call
is made to the ewait method (line 21 of Fig. 6) until the
waitfor loop finally times out, once this happens, the code
in the timeout clause is called and the peer is restarted
(line 22 of Fig. 6).

The user peer is waiting for responses from the
extract peer (line 20 of Fig. 5), once received the IDs
are concatenated into a list, through an external service
invocation and a recursive call is made to the uwait

method. This method continues to execute until the
waitfor loop eventually times out and the uterminate

method is called (line 23 of Fig. 5).
Control then passes to the uterminate method.

Through a registry call, a suitable hyperz peer is located
to execute the Redshift calculation. The IDs (relating to the
data stored at the tools peer) are retrieved and sent (line
28 of Fig. 5) along with the unique name of the hyperz peer
and the end user. Once received by the tools peer (line 7
of Fig. 7), the second part of the or else branch is executed
and the process method is called. The data are retrieved
and passed through the SExtractor (in order to extract all
objects of interest) and the cross matching tool (to combine
the results) before being sent to the hyperz peer indicated
by the $hz variable. The final Redshift calculation is
performed on the combined data (line 27 of Fig. 7) and
the results are sent directly to the user who requested the
processing (line 28 of Fig. 7), indicated by the $enduser

variable, a confirmation of protocol completion is also sent
to the user peer. Execution of the protocol terminates.

3.4 Protocol Verification

An important consideration when defining service choreo-
graphy is the issue of correctness. That is, if we are
dynamically connecting together a collection of services to
perform a task, we want to be reasonably sure that the
services will interact correctly to accomplish this task. This
is particularly true for long-lived computations that cannot
trivially be repeated. We do not want the choreography to
fail unexpectedly after a significant computational effort has
been expended. Therefore, in this Section, we outline a
technique that can be used to determine the correctness of
MAP service choreography.

A key feature of protocols in MAP is that they are
directly executable. Each participant in the interaction
executes their role in the protocol, causing the interactions
to happen at the right time and in the correct sequence.
However, it is important to appreciate that the protocols are
executed concurrently, by many participants at the same
time. One participant may interact simultaneously with
many others, and these interactions may be interleaved in
complex ways. This concurrent behavior causes complica-
tions when we attempt to determine protocol correctness.

The key difficulty lies in the asynchronous nature of
service choreography. Asynchrony introduces nondetermin-
ism into the system which gives rise to a large number of
potential problems, such as synchronization, fairness, and

deadlocks. It is difficult, even for an experienced protocol
designer, to obtain a good intuition for the behavior of a
concurrent protocol, primarily due to the large number of
possible interleavings that can occur. Debugging and
simulation techniques cannot readily explore all of the
possible behaviors of such systems, and therefore, signifi-
cant problems can remain undiscovered.

To show the correctness of MAP service choreography,
we turn to software verification techniques. The execution
behavior of a complex service choreography is very similar
to that of a concurrent (e.g., multithreaded) software
application. This leads us naturally to model checking
techniques [12], which are one of the main ways that the
execution of concurrent software (and hardware) systems is
verified. Model checking works simply by enumerating the
state space of the system and checking its behavior along all
possible execution paths. Given sufficient resources, the
model checking process will always terminate with a yes/
no answer. Model checking has been applied with con-
siderable success to the verification of concurrent hardware
systems, and it is increasingly being used as a tool for
verifying concurrent software systems, including multia-
gent systems [8], [10], [38].

To perform model checking on MAP, we require an
encoding of the service choreography into a form suitable
for model checking. In [37], we previously defined a
translation from MAP into PROMELA, which is the input
language of the SPIN model checker [22]. A similar
technique has been defined for the AgentSpeak language
[10]. It is also helpful to sketch the translation of the
semantics of MAP into modal temporal logic, as this
underlies the model-checking process. We require only
one modal construct: the term �’ denotes that the
expression ’ is true at some future time. Fig. 8 illustrates
the translations into this form for the operations of MAP.
The square brackets indicate that the translation should be
applied recursively. The global environment � stores
mappings from method arguments to operations
(�ðkÞ 7! op). When a method is called, a pattern-matching
operation is performed over the arguments in the environ-
ment �ð�ðkÞÞ, and the matching operation is evaluated. If no
match can be found, the model checking process will fail.

A key feature of the MAP encoding process is the
treatment of the actions. We make the observation that the
purpose of each action is to impose a true/false decision on
a protocol, and the purpose of the model checking process
is to detect errors in the protocol and not in the services.
Thus, based on these observations, we can replace each
action with a pair of states, one of which signifies that the
outcome is true, and the other false. The exhaustive nature
of the model checking process means that all possible
behaviors of the protocol are explored. In other words, the
model checker explores all consequences for the protocol
where the action was true, and all consequences where the
action was false. Thus, we do not need to invoke the actual
services, or perform any message-passing, during the
model checking process.

The encoding which we have outlined here can be
performed automatically by a computer as it does not
require any specific knowledge about the protocol. This
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makes the technique suitable for use by nonexperts who do

not need to understand the model checking process.

However, we note that this approach places restrictions

on the kinds of properties of the protocols that we can

check. In particular, we cannot automatically verify proper-

ties which are specific to the domain of the protocol.
We have principally focused on checking the termination

of MAP service choreography with model checking. This is

an important consideration in the design of protocols, as we

do not (normally) want to define protocols that cannot

conclude. Nontermination can occur as a result of many

different issues such as deadlocks, live-locks, infinite

recursion, and message synchronization errors. Further-

more, we may also wish to ensure that protocols do not

terminate due to failure within the protocol.
The termination condition is the most straightforward to

verify by model checking. Given that progress is a

requirement in almost every concurrent system, the SPIN

model checker automatically verifies this property by

default. The termination condition states that every process

eventually reaches a valid end state. System properties are

expressed in Linear Temporal Logic (LTL) inside the SPIN

model checker. The termination can be expressed as the

following LTL formula, where end1 is the end state for the

first process, and end2 is the end state for the second

process, etc., utð �ðend1 ^ end2 ^ end3 ^ � � � ÞÞ.
One of the main pragmatic issues associated with model

checking is typically producing a state space that is

sufficiently small to be checking with the available

resources. Hence, it is often necessary to use abstraction

techniques, such as we have done for the actions, and to

make simplifying assumptions. Other researchers have also

considered this problem. For example, Bordini et al. [11]

propose a program-slicing technique to improve the

efficiency of the model checking process. Nonetheless, in

our experience, MAP specifications tend to be compact even

for a complex choreography, and we have not encountered

any significant difficulties checking very complex protocols,

such as the Redshift scenario described previously. As a

result, we claim that model checking is a very useful and

powerful automated technique for verifying the correctness

of service choreography. For a detailed description of the

model checking techniques discussed in this paper, refer to

a complimentary paper [37].

4 MAP IMPLEMENTATION

The MAP specification has been implemented as an open-
source Web service choreography framework, MagentA4

using a combination of Java (J2SE v1.4.2 SDK), Web services
(Java Web Services Developer Pack 1.5), and XML technol-
ogies. A peer is a lightweight, noninvasive piece of
middleware that serves as a proxy to a Web service or
group of Web services. For optimized data flow, a peer
should be deployed on the same server, network, or domain
as the Web service(s) it is invoking, so that communication
between a peer and a Web service is conducted via a Local
Area Network not a Wide Area Network. The MAP
language has been represented using an XML schema,
providing a straightforward conversion from the formal
syntax to computer interpretable form.

The interface to a peer is exposed via WSDL and is
therefore accessible like any standard Web service. This
flexibility allows a gradual change of infrastructures,
where one, could for example, concentrate first on
improving data transfers between services that handle
large amounts data.

4.1 MAP Enactment Process

Once a MAP protocol is defined through the protocol
methodology described in Section 3, it must be dissemi-
nated to a group of peers for enactment. Engineers write
MAP protocols in the XML encoded syntax, this is
automatically translated to the MAP syntax. As discussed
in Section 1.3, MAP protocols are directly executable
choreography specifications. Peers are, in effect, blank
canvases and can execute any MAP protocol, i.e., choreo-
graphy specifications do not have to be hard-coded into a
peer at design-time. This allows protocols to be uploaded
and executed dynamically. Fig. 9 illustrates the steps
involved with protocol enactment. With reference to
Fig. 9, the following process takes place.

Locate peers. Prior to the dissemination of a protocol,
peers are located at runtime through a registry lookup
service. The physical network location (IP address) of each
peer willing to fulfill a role defined in the protocol is spliced
into the MAP protocol definition before it is disseminated to
the participating peers. All roles defined within the protocol
must be filled, e.g., for our Redshift scenario, the user,
extract, tools, and hyperz roles. The physical network
locations of peers facilitate message routing, allowing peers
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to send and receive messages to one another. More details of
this process are described in a complimentary paper [28].

Receive protocol. Each peer willing to fulfill a role is sent
the MAP protocol definition (encoded in XML) across the
network, along with the role name it is required to adopt
within the protocol. This is illustrated by steps 1 and 2 of
Fig. 9.

Unpack protocol. Once a peer receives a MAP protocol,
the parsing component will unmarhsall and validate it
against the MAP XML Schema. Any exceptions through a
malformed protocol are thrown to the exception handler,
initialization is terminated, and exceptions are reported to
the user.

Build execution model. If the validation is successful,
the XML parser (implemented through JAX-B) converts the
role definition (represented as XML) to an internal
execution model. This internal execution model is repre-
sented as a Java Content Tree and allows manipulation of
the role definition.

Initiate interaction. Peers form a peer-to-peer system. As
each peer has a local copy of the protocol, no centralized
control is required. Once all peers have obtained a copy of
the protocol and have been initialized, enactment of the
choreography can begin.

Peers follow the protocol as a script, invoking actions
(from the action set), Web services, and sending/receiving
messages to one another. The MAP protocol defines which
peer role initiates the choreography, i.e., an engineer
specified this when constructing the protocol. Steps 3 and 4
of Fig. 9 illustrate an example pattern of interaction between
the peers involved in the motivating Redshift scenario.
Service invocations are handled by the JAX-RPC interface.
This handler is generic in that it can call any method once it
has obtained the WSDL definition. Details of which peers are

enacting the MAP protocol were spliced into the MAP
protocol definition before it was disseminated. Each peer has
a local copy of the protocol, contained within that definition
are the concrete details of where collaborating peers are
located, i.e., an IP address. When a peer wants to send a
message to another peer, these concrete network locations
are addressed. Messages sent from one peer to another are
encoded in XML and sent via SOAP. Execution terminates
when all the protocol steps have been enacted, or the
protocol fails. Failures can be classified as external failures,
due to faulty Web services invocations; or internal failures,
due to a badly written protocol.

5 MAP VALIDATION

Service Interaction Patterns [7] (a subset of workflow
patterns research) are a collection of 13 recurring patterns
derived from insights into business-to-business transaction
processing, use-cases gathered by standardization commit-
tees, generic scenarios identified in industry standards, and
case studies reported in the literature. The collection of
Service Interaction Patterns facilitate the assessment of
emerging Web services standards by providing a common
basis on which workflow languages can be compared. MAP
is a comparatively simple process language and is therefore
relatively sparse in features. MAP does not have dedicated
constructs for dealing with these common interactions, i.e.,
no multicast support, no atomic transaction support.
However, MAP can implement the majority of 13 Service
Interaction Patterns by combining actions and operations
together in novel ways. The solutions presented are not the
only possible implementations.

The three simple patterns Send, Receive, and Send/
recieve are directly supported in MAP through send (=>)

and receive (<=) actions. MAP allows that a receiver
of a message is bound at design-time or at runtime through
a variable assignment.

In the case of the Racing incoming messages pattern, a
party expects to receive one among a set of messages. MAP
solution: A number of receive (<=) actions, each with
their own message signature, i.e., performative type and
message contents are separated by an or else operator,
e.g., type1($c1) <= peer(_,_) or else type2($c1,

$c2) <= peer(_,_). Receive actions are usually wrapped
with a waitfor loop with an optional timeout set.
Messages from arbitrary senders can be received as long as
the message signature matches that in the protocol, any
peer type and role type constraints are met. This pattern
was implemented in our the tools peer, lines 1-21 of Fig. 7.

One-to-many send. A party sends messages to several
parties, the messages all have the same type, although their
contents may be different. MAP solution: This pattern is
supported by invoking the call operator recursively on a
list of participants. A method is defined which recursively
sends a message to a list of participants. The participant list
is broken up into $head and $tail, a message is sent by
splicing in the head of the list in the send action, e.g., =>
peer($head, _). The call operator invokes the method
using the $tail of the list as input. This pattern was
implemented in our motivating Redshift scenario, in
particular, the user peer, lines 11-16 of Fig. 5. Alternative
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corresponding to the User (U-P), Extract (E-P), Tools (T-P), and HyperZ

(H-P) peers. A protocol (described using MAP) is represented as a

rectangle and Web services as rounded circles. Step 1 illustrates peers

sitting in front of standard Web services. In Step 2, the MAP protocol is

disseminated to each peer willing to fulfill a role in the protocol. Step 3

illustrates an example pattern of interaction between peers and Step 4

illustrates a further pattern of interaction involving external Web service

invocations.



MAP solution: define a method that sends a message, set
the imax variable on the waitfor loop with an integer
representing the maximum number of participants that
require the message.

One-from-many receive. This pattern describes the
scenario where a party receives a number of logically
related messages that arise from autonomous events
occurring at different parties. MAP solution: A receive

(<=) action could be wrapped by waitfor and timeout

operations. The stop condition of the loop could be set by
the number of messages received using the imax variable,
or by a timing constraint, using the tmax variable. If tmax
is met, i.e., messages are not received within a particular
window, compensation actions could be defined within the
timeout clause. Finally, if the receiving signatures are
different for each of the participants, it is possible to define
multiple signatures separated by the or else operator, as
defined in the Racing incoming messages pattern.

One-to-many send/receive pattern. A party sends a
request to several other parties. Responses are expected
within a given time frame, the interaction may complete
successfully or not depending on the set of responses
gathered. MAP solution: This pattern is similar to the One-
to-many send and One-from-many receive patterns. The
temporal constraint is set through the tmax value. If the
tmax value is met without receiving the required number of
responses, compensation actions can be defined within the
timeout clause.

Multiresponses. A party X sends a request to another
party Y. Subsequently, X receives any number of responses
from Y until no further responses are required. MAP
solution: This pattern is directly supported through the
waitfor loop, with the imax variable and corresponding
timeout operation and tmax variable.

Contingent requests pattern. A party X makes a request
to another party Y. If X does not receive a response within a
certain time frame, X alternatively sends a request to
another party Z. MAP solution: A method m1 is defined
which takes as input the name of a participant in the first
case Y. A send (=>) action is parameterized by the name
of the participant (obtained as input to m1), once complete a
receive (<=) action waits for the response from the same
participant. The tmax variable is set in the timeout clause.
If the time constraint is met, the timeout clause is
executed. Within the timeout clause, a recursive call to
m1 is made using the name of another party, party Z as
input, this starts the process again and ignores any further
correspondence to party X. Naturally, this can be recursive
until the stop condition, i.e., no further participants to send
messages to is met.

Atomic multicast notification. A party sends notifica-
tions to several parties such that a certain number of parties
are required to accept the notification within a certain time
frame. For example, all parties or just one party are required
to accept the notification, i.e., two-phase commit. MAP
solution: This pattern is implementable by defining a
method which sends the requests, a method which listens
for positive responses (negative ones can be ignored) within
a set time, i.e., by defining tmax from a set number of
participants, i.e., by defining imax. If it fails, i.e., not

enough positive responses are received, a compensation
method sends out abort messages.

Request with referral. Party A sends a request to party
B indicating that any follow-up response should be sent to
a number of other parties depending on the evaluation of
certain conditions. MAP solution: Party A sends a
message containing a variable of peer type/role type to
party B. Party B then utilizes the peer type/role type
information, splicing it into any corresponding send (=>)

actions, i.e., follow-up responses. This is also known as
link passing mobility.

Relayed request pattern. Party A makes a request to
party B which delegates the request to other parties
(P1; . . . ;Pn). Parties P1; . . . ;Pn then continue interactions
with party A, while party B observes a view of the
interactions including faults. MAP solution: Passing peer
type/role type variables are specified in the Request with
referral pattern.

Dynamic routing. A request is required to be routed to
several parties based on a routing condition. The routing
order is flexible and more than one party can be activated to
receive a request. When the parties that were issued the
request have completed, the next set of parties pass the
request. Routing can be subject to dynamic conditions based
on data contained in the original request or obtained in one
of the intermediate steps. MAP solution: MAP does not
directly support this pattern; however, it is possible to
implement a solution based on Web service calls to evaluate
the dynamic conditions for the routing.

6 RELATED WORK

This Section discusses all related work from the literature,
spanning pure choreography languages, enhancements to
widely used modeling techniques, i.e., BPMN, decentra-
lized orchestration, data flow optimization architectures,
and Grid toolkits.

6.1 Choreography Languages

There are an overwhelming number of pure orchestration
languages, this Section reviews languages targeted speci-
fically at choreography: WS-CDL, Let’s Dance, and
BPEL4Chor.

The WS-CDL is the proposed standard for service
choreography, currently at the W3C Candidate Recommen-
dation stage. However, WS-CDL has met criticism [6], [16]
through the Web services community. It is not within the
scope of this paper to provide a detailed analysis of the
constructs of WS-CDL, this research has already been
presented [20]. However, it is useful to point out the key
criticisms with the language: WS-CDL choreographies are
tightly bound to specific WSDL interfaces, WS-CDL has no
multiparty support, no agreed formal foundation, no explicit
graphical support, and few or incomplete implementations.

Let’s Dance [39] is a language that supports service
interaction modeling both from a global and local viewpoint.
In a global (or choreography) model, interactions are
described from the viewpoint of an ideal observer who
oversees all interactions between a set of services. Local
models, on the other hand, focus on the perspective of a
particular service, capturing only those interactions that

162 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009



directly involve it. Using Let’s Dance, a choreography
consists of a set of interrelated service interactions which
correspond to message exchanges. Communication is
performed by an actor playing a role. Interaction is specified
using one of three Let’s Dance constructs: precedes; the source
interaction can only occur after the target interaction has
occurred, inhibits; denotes that after the source interaction
has occurred, the target interaction can no longer occur, and
finally, weak precedes; denotes that the target interaction can
only occur after the source interaction has reached a final
status, e.g., completed or skipped. A complete overview of
the Let’s Dance language is presented in [39], including
solutions to the Service Interaction Patterns.

BPEL4Chor [15] is a proposal for adding an additional
layer to BPEL to shift its emphasis from an orchestration
language to a complete choreography language. BPEL4-
Chor is a simple, collection of three artifact types: participant
behavior descriptions define the control flow dependencies
between activities, in particular between communication
activities, at a given participant. A participant topology
describes the structural aspects of a choreography by
specifying participant types, participant references, and
message links; this serves as the glue between the
participant behavior descriptions. Finally, participant
groundings define the technical configuration details, the
choreography becomes Web service specific, concrete links
to WSDL definitions, and XSD types are established.
BPEL4Chor is an effective proposal and importantly sticks
to standards [3] by enhancing the industrially supported
BPEL specification. BPEL4Chor encourages reuse by only
providing a specific Web service mapping in the participant
grounding. Furthermore, unknown numbers of participants
can be modeled, not possible with WS-CDL.

6.2 Modeling Support

There are several proposals for extending the Business
Process Modeling Notation [2]; the de facto standard for
business process modeling. Although the BPMN allows an
engineer to define choreographies through a swimlane
concept and a distinction between control flow and message
flow, it only provides direct support for a limited set of the
Service Interaction Patterns and not some of the more
advanced choreography scenarios. Decker and Barros [13]
introduce a set of extensions for BPMN which facilitate an
interaction modeling approach as opposed to modeling
interconnected interface behavior models. Authors claim
that choreography designers can understand models more
effectively, introduce less errors, and build models more
efficiently. Evaluation concludes that the majority of the
Service Interaction Patterns can be expressed with the
additional extensions. Decker and Puhlmann [17] discuss
the deficiencies of the BPMN for choreography modeling
and proposes a number of direct extensions for the BPMN
which overcome these limitations.

6.3 Techniques in Data Flow Optimization

There are a limited number of research papers which have
identified the problem of a centralized approach to service
orchestration when dealing with data-centric workflows.
For completeness, this Section presents an overview of a
number of architectures.

The Circulate architecture [5] maintains the robustness
and simplicity of centralized orchestration, but facilitates
choreography by allowing services to exchange data
directly with one another. Performance analysis [4] con-
cludes that a substantial reduction in communication
overhead results in a 2-4 fold performance benefit across
all workflow patterns. An end-to-end pattern through the
Montage workflow (a benchmark for the HPC community)
results in an 8-fold performance benefit and demonstrates
how the advantage of using the architecture increases as the
complexity of a workflow grows.

In [31], the scalability argument made in this paper is
also identified. The authors propose a methodology for
transforming the orchestration logic in BPEL into a set of
individual activities that coordinate themselves by pas-
sing tokens over shared, distributed tuple spaces. The
model suitable for execution is called Executable Workow
Networks (EWFN), a Petri nets dialect.

Triana [35] is an open-source problem solving environ-
ment. It is designed to define, process, analyze, manage,
execute, and monitor workflows. Triana can distribute
sections of a workflow to remote machines through a
connected peer-to-peer network. OGSA-DAI [26] middle-
ware supports the exposure of data resources on to Grids
and facilitates data streaming between local OGSA-DAI
instances. Grid Services Flow Language (GSFL) [29] addresses
some of the issues discussed in this paper in the context of
Grid services, in particular, services adopt a peer-to-peer
data flow model.

7 CONCLUSIONS

The motivating Redshift scenario, taken from the AstroGrid
science use-cases, demonstrated how centralized orchestra-
tion can become a bottleneck to the performance of a
workflow, extra copies of data are sent that consume
network bandwidth and overwhelm the central engine.
Choreography does not rely on centralization, as a result,
services can pass data directly to where they are required, at
the next service in the workflow. We argue that as the
number of services and the size of data involved in
workflows increase, traditional centralized orchestration
techniques are reaching the limits of scalability. Choreo-
graphy techniques, although more complex to model offer a
decentralized alternative and for data-centric workflows,
are the optimal architecture.

This paper has introduced the MAP choreography
language, an implementation of interconnection choreogra-
phy models. Our aim was to demonstrate how service
choreographies can be specified, verified, and enacted with
a comparatively simple process language, with a focus on
data flow optimization. The MAP language syntax, corre-
sponding open-source implementation and model checking
environment have been discussed in the context of our
motivating Redshift scenario. MAP was evaluated by
demonstrating the languages conformance to the Service
Interaction Patterns and through use-case, by implementing
the Redshift scenario. Returning to our original aims in
Section 1.3, we highlight the contributions this paper has
made with reference to the Related Work, discussed in
Section 6.
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7.1 Loosely Coupled Choreography Interface

Peers are decoupled from the Web services they invoke, i.e.,

they are an entirely separate component. This decoupling

means that Web services need no alteration or knowledge

that they are even taking part in a choreography. Therefore,

no modification of Web services needs to take place prior to

enactment; although for optimal data flow, a peer needs to

be installed as closely as possible to the Web service(s) it is

to invoke so that communication goes over a Local Area,

not Wide Area network. Web services are owned and

maintained by different organizations and may not agree to

installing specialist interfaces in order to facilitate choreo-

graphy, unless they have something to gain. Peers are less

intrusive and offer an advantage as they are entirely

external to the Web services.
In comparison, WS-CDL is invasive to the Web services

themselves as an engineer must agree to and program a

closely coupled WS-CDL interface (which sits above WSDL)

in order to take part in a choreography. It is entirely

possible for WS-CDL and other choreography languages to

be decoupled from the Web services they make use of;

however, MAP has introduced this architecture and

provides this functionality by default.

7.2 Executable Choreography Language

This paper has introduced the notion of an executable

choreography language. Peers act as blank canvases and do

not have to be preconfigured with a particular choreogra-

phy definition in advance. Instead a choreography, specified

as a MAP protocol, can be sent to a group of peers across a

network, each peer dynamically reads in the MAP protocol,

assumes a role within the protocol, and enacts the

choreography across the set of distributed peers. In contrast,

an engineer must preinstall and configure existing choreo-

graphy languages at design-time in order for a service to

take part in a choreography. The MAP approach has been

applied to live e-Science scenarios in the Astronomy

domain: first to the UK e-Science project AstroGrid and

second to the Large Synoptic Survey Telescope project

(LSST). These applications have demonstrated the use of

MAP to implement real-world scenarios where large data

sets are passed between collaborating peers.
We have demonstrated that although MAP does not

have dedicated constructs for dealing with the Service

Interaction Patterns, 12 of the 13 patterns can be imple-

mented by combining actions and operations together in

novel ways. MAP supports multiparty communication

between an unknown and unbounded set of participants,

allowing multiple MAP protocols to be executed concur-

rently. These multiparty scenarios are very common, as

demonstrated by the Service Interaction Patterns. In

contrast, WS-CDL does not directly support parallel

conversations with an unknown number of participants.

That means, all participants have to be modeled before the

enactment of a choreography and makes auctions scenarios

with an unknown number of bidders impossible. Un-

known numbers of participants are natively supported in

BPEL4Chor [15].

7.3 Verification through Model Checking

Asynchronous service choreography introduces nondeter-
minism into the system which causes a number of potential
problems such as synchronization, fairness, and deadlocks.
Model checking techniques, discussed in Section 3.4, have
been introduced in order to verify certain properties of a
choreography (e.g., termination) before it is deployed live
over a network. In contrast, WS-CDL borrows terminology
from �-calculus, though there are no accepted formal
semantics, an early attempt is made here [23]. In [30],
authors demonstrate how BPEL4Chor can be verified
through Petri nets. Let’s Dance also has documented
execution semantics [19] for the language in terms of a
mapping to �-calculus; these formal semantics provide a
basis for analyzing choreographies.

7.4 Open-Source Implementation

Choreography modeling techniques (e.g., extensions to
BPMN), discussed in Section 6.2, are useful for designers
to build models more efficiently; however, they provide no
framework for enactment. Importantly, MAP is not a
simulation environment, the MAP specification has been
implemented as an open-source Web services choreography
tool kit, MagentA, which provides a concrete API and
framework for the enactment of distributed choreographies.
The importance of concrete implementations is often over-
looked in the literature.

At the time of writing, there are only two documented,
prototype implementations of the WS-CDL specification.
The work of WS-CDL+ [24] proposes six extensions to the
WS-CDL specification to enhance expressiveness and
usability. The extended specification [25] has been im-
plemented in prototype form, although only one version,
version 0.1, has been released. A further partial imple-
mentation [20] of the WS-CDL specification is currently in
the prototype phase. The other widely known implemen-
tation is pi4soa,5 an Eclipse plugin which provides a
graphical editor to compose WS-CDL choreographies and
generate from them compliant BPEL. Maestro [14] is an
implementation of the Let’s Dance language and supports
the static analysis of global models, the generation of local
models from global ones, and the interactive simulation of
both local and global modes. In the BPEL4Chor space, A
Web-based editor6 allows engineers to graphically build
choreography models.

7.5 Future Work

Research based on the MAP approach to service choreo-
graphies is ongoing through the Open Knowledge project7

an European Union FP6 project. The OpenKnowledge
project aims at knowledge sharing through open and
flexible peer interactions. Within this project, the members
are developing a system that supports searching, develop-
ing, and sharing of interactions/workflows consisting of
roles implemented by software that can be shared and
executed by peers. Its main requirements are openness,
scalability, decentralization, and robustness.
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5. http://sourceforge.net/projects/pi4soa [16/12/2008].
6. http://www.bpel4chor.org/editor/ [16/12/2008].
7. http://www.openk.org/ [16/12/2008].
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