
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2250

A survey of self-healing systems frameworks

Chris Schneider*,†, Adam Barker and Simon Dobson

School of Computer Science, University of St Andrews, UK

SUMMARY

Rising complexity within multi-tier computing architectures remains an open problem. As complexity
increases, so do the costs associated with operating and maintaining systems within these environments.
One approach for addressing these problems is to build self-healing systems (i.e. frameworks) that can
autonomously detect and recover from faulty states. Self-healing systems often combine machine learning
techniques with closed control loops to reduce the number of situations requiring human intervention. This
is particularly useful in situations where human involvement is both costly to develop, and a source of poten-
tial faults. Therefore, a survey of self-healing frameworks and methodologies in multi-tier architectures is
provided to the reader. Uniquely, this study combines an overview of the state of the art with a comparative
analysis of the computing environment, degree of behavioural autonomy, and organisational requirements of
these approaches. Highlighting these aspects provides for an understanding of the different situational bene-
fits of these self-healing systems. We conclude with a discussion of potential and current research directions
within this field. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increasing complexity of modern computing environments is continuing to produce challenges
in reliable and efficient systems management. As infrastructures share multi-faceted physical and
virtual requirements, the static capabilities of human administration are showing decreases in their
relative effectiveness. This is increasing the costs of systems management, whilst simultaneously
introducing potential problems–such as issues with change management and simple human error.
This problem is particularly evident in multi-tier architectures where services comprised several sets
of systems with differing responsibilities.

Self-healing systems frameworks are emerging as a useful approach in addressing the rising com-
plexity requirements of systems management. These frameworks attempt to classify and analyse
sensory data to autonomously detect and mitigate faults. This in turn reduces the need for systems to
interface with human administrators, lowering operational costs and, ideally, improving upon exist-
ing mitigation techniques. Self-healing methodologies are often realised through the use of machine
learning techniques or other aspects in artificial intelligence. They have been described via archi-
tectural differences [1], network behaviours [2], research areas[3] and even biological likenesses[4].
These surveys have produced a broad spectrum of knowledge and highlighted notable advances and
exigencies within the field. However, the effectiveness of these solutions, and the commonalities
shared between implementations, has yet to be fully explored.
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Uniquely, this survey contrasts the type of environment or infrastructure in which self-healing
frameworks operate, the learning methodologies these self-healing frameworks are expected to
exhibit, and their manageability requirements or hierarchical needs. These criteria were chosen as
they are expected to be ubiquitous within any given self-healing systems implementation and thus
make for good markers of comparison. By providing an understanding of where specific method-
ologies are being leveraged and under what circumstances, this survey provides a groundwork
for comparing the relative effectiveness of self-healing frameworks. Furthermore, analysing self-
healing frameworks based on commonly shared properties allows for a comparative understanding
of each methodology, their respective benefits, and their relative human costs. It explores the type
of self-healing methodologies as related to their expected environment and provides groundwork
for exploring correlations between these factors. By contrasting behavioural properties with their
expected implementation and level of autonomy, this paper provides a greater understanding of
which techniques are being leveraged and under what circumstances.

The remainder of this paper is structured as follows. The rest of Section 1 briefly covers the vision
and foundational research of self-healing systems. Section 2 provides an overview of existing self-
healing systems methodologies–including frameworks, operating systems, and services. Section 3
outlines the results each of these systems have had and novel approaches that have been produced.
It is here that different approaches are contrasted, including management styles, architectures, and
learning mechanisms. Section 4 concludes with a summary of findings and a brief discussion on
future research.

1.1. Background

Many of the methodologies discussed in this paper refer to existing works in Autonomic Computing.
Autonomic Computing covers a wide range of topics in self-managing systems–including
self-healing, self-optimisation, self-protection, and self-configuration properties. Although a famil-
iarity with this area of research is assumed, a summary of foundational literature is provided here
for ease of reference.

This section discusses in brief the Autonomic Computing Initiative [5], and the goals and criteria
of self-healing systems, as initially described by IBM and subsequent publications [6, 7]. The illus-
tration of these goals provides a way to narrow the problem space into addressable components and
brings context to the methodologies presented in this survey.

1.1.1. Autonomic computing. The Autonomic Computing Initiative was proposed in 2001 to
address growing complexity in systems management [5]. IBM proposed building software that
could autonomously manage systems using a series of closed control loops and ‘environmental
knowledge’. These recursive software elements utilise a series of inferential steps to make real-time
decisions that mitigate problems and automate palliative maintenance tasks. Over the last 10 years,
several advances have been made in realising these goals.

In 2003, IBM published two articles that built upon their initial proposal outlining the aforemen-
tioned four primary topics (or ‘tenets’) in Autonomic Computing, a general process for autonomic
systems management [7], and a set of criteria that described behavioural ‘levels’ and generic goals of
self-managing systems [6]. The process for automating systems management tasks, often referred to
as MAPE+K, outlined a recursive approach for continuously understanding and making changes to
a system’s state. By utilising ‘knowledge’ (K) about a system’s environment, a designated software
agent would Monitor, Analyse, Plan, and Execute (MAPE) instructions to meet user-specified poli-
cies. Since its introduction, MAPE+K has proven to be a central component in many self-managing
systems implementations.

In order to understand the effectiveness of a given MAPE+K-based process, behavioural levels
were used to evaluate the implementations maturity. These levels ranged from basic to fully auto-
nomic and were evaluated based on whether they could consolidate information, recommend an
action, autonomously take an action, and finally interpret a user-specified policy to do all of
the aforementioned behaviours. Importantly, this article recommended an evolutionary approach
in reaching each of these stages [6]. Building self-managing systems that operate at different
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levels permits heterogeneous infrastructures, and allows for the gradual adoption of Autonomic
Computing technology. This includes environments where existing systems may not be compatible
with all of the autonomic computing levels.

To address the challenges proposed in these two articles, agent-based approaches for managing
systems were introduced [8]. Utilising aspects in artificial intelligence, this work was based on an
earlier text discussing reflex, goal, and utility agents [9]. Simply stated, reflex agents use if–then
rules to map actions to a specified state. In practice, this approach is used once some criteria are met
to execute a pre-specified set of instructions. Goal and utility-based agents attempt to exhibit ratio-
nal decision making by autonomously determining what actions to take based on expected results.
The primary difference between goal and utility-based agents is that the former selects behaviours
to attain a given objective, whilst the latter attempts to reach and optimise behaviours such that mul-
tiple objectives can be achieved at once. This was particularly useful if two goal policies contradict
each other.

Using this approach as a foundation, IBM proposed that self-managing solutions leverage Action,
Goal, and Utility ‘policies’. These policies incorporated high-level objectives with systems tasks
whilst allowing for resolution conflicts between enacted behaviours. However, the implementation
of broad level policies have produced challenges in evaluating the effectiveness of self-managing
systems. In the following year, a framework was introduced for evaluating the performance of a
self-healing system called deployable testbed for autonomic computing [10].

This framework unified the MAPE+K control loop with industry requirements and provided
metrics for evaluating self-managing systems. It described and quantified properties such as stabil-
ity, accuracy, settling times, and efficiency. By using these properties, it became possible to conduct
behavioural evaluations based on a system’s environmental knowledge and historical performance
data. The evaluation of this information led to a more expansive approach that discussed general
research challenges in self-managing systems and a variety of scientific advances in self-managing
systems [11].

Specifically, self-managing systems solutions were divided into elements, systems, and inter-
faces; and standard definitions and requirements for each of these components were proposed. This
helped to unify the mission of Autonomic Computing with practical implementations by illustrating
examples of where action, goal, and utility policy approaches had been implemented [12–17].

Notably, Kephart argued that the division of self-managing systems into autonomic elements
would allow for easier adoption of legacy systems. By incorporating existing services with an auto-
nomic interface, legacy architectures could be made to adopt self-managing strategies. Once a legacy
system had an access point for autonomic communications, self-managing systems could exert some
influence over the existing infrastructure. Indeed, the notion of inter-element communication was
arguably the central thesis of this paper: ‘The main new research challenge introduced by the auto-
nomic computing initiative is to achieve effective inter-operation among autonomic elements’ [11].
This challenge continues to be an open problem in self-managing systems.

The establishment of core tenets, the MAPE+K process, evaluation methodologies, the Auto-
nomic Maturity model, and action, goal, and utility policies created a foundation for stand-alone
contributions in self-managing systems [18]. The ideas have also migrated into the domain of
communications [2] and have found extensive use in networks and embedded systems.

1.1.2. Self-healing systems. The definition of a self-healing system has evolved over the past
10 years. Initially, self-healing systems were described as being able to detect and recover from
faults, without the need for human interaction [7]. Although no system has been able to operate
with complete autonomy, several advances have been made towards the realisation of self-managing
computing environments. This has come as evolutionary processes are being routinely involved with
the development and maintenance of autonomic computing frameworks; a prediction made by IBM
in 2001 [6].

As large-scale computing infrastructures have become more complex, and existing methods for
operating and maintaining systems have become less effective. The use of skilled engineers to apply
monitoring techniques that search for faults, engage in root-cause analysis, and execute appropriate
recovery strategies remains the de facto standard of most professional organisations. Most of these

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



C. SCHNEIDER, A. BARKER AND S. DOBSON

monitoring techniques utilise some form of behavioural test to indicate when a fault is present.
Self-healing systems seek to automate these processes. If a service fails, rather than requiring an
engineer to intervene, a self-healing system would autonomously diagnose the fault and then execute
a recovery strategy.

The potential exists for systems to diagnose issues more quickly than their human counterparts.
If realised, the result would mean less time spent administering systems, reductions in operational
costs, and decreases in lost revenue. Consequently, the definition of self-healing systems has been
expanded to include behavioural aspects that are commonly evaluated in modern computing infras-
tructures. It is no longer acceptable for a system to simply detect and recover from faults–it must do
so transparently and within certain criteria.

The definition of criteria can vary as infrastructures have different requirements; however, they
often include aspects such as availability, reliability, and stability. Availability is defined as whether
or not a system is accessible, whilst reliability is a percentage of time that a system operates as
expected. Stability is defined as how fast a system can mitigate faults and return to its original state.

The integration of behavioural aspects has helped to unify business needs with IBM’s original
vision of self-healing systems. By adopting partially self-healing systems into traditional infras-
tructures, an evolution of techniques and new self-healing systems methodologies have emerged.
However, not all self-healing methodologies are compatible with existing infrastructures, and
the maturity of many of these techniques has not been fully realised. As self-healing systems
methodologies become more mature, less human supervision should be required.

One approach to understanding maturity in a self-healing environment is by evaluating systems
state via behavioural properties [8,19,20]. By understanding when and how long a systems executes
self-healing behaviours, it becomes possible to evaluate self-healing methodologies against existing
implementations. Understanding the effectiveness of self-healing systems methodologies against
current approaches provides a practical baseline for understanding the advancement of self-healing
systems outside of the Autonomic Maturity Model. However, to achieve this goal, a set of criteria
must first be defined, which is present in a majority of self-healing systems methodologies that are
to be evaluated both now and in the future. It is for this reason that computing environment, learning
methodology, and management style were selected for comparison.

1.1.3. Assumptions and definitions. Research in self-managing systems contains a wide variety of
terminology and definitions. Although some definitions are considered to be standardised [19], many
publications utilise terms in a modified fashion to meet the stricter requirements of their purposes.
As vocabulary usage diverges, multiple connotative and denotative understandings are formed by
readers. The following paragraph describes comparative terms utilised within this survey. This is
carried out with the intent of helping the reader to establish a referential understanding. Likewise,
many of the terms and purposes of the Autonomic Computing Initiative share properties and, to a
lesser extent, charters. For example, in order for a system to self-heal, often it must elect to change
its configuration in some way. This is sometimes confused with the concept of self-configuration,
which deals primarily with self-provisioning–the ability for a system to continuously evaluate and
integrate itself without human interaction within a given computing environment. Security aspects
share similar traits under the self-protection tenet. This is a topic that is later addressed in Sections 3
and 4.

For the purposes of this survey, self-healing systems are assumed to be real or virtualised servers
that exist within a grid, cloud, or standard large-scale computing infrastructure. Although there are
numerous physical components that make up large-scale computing environments, the scope of this
survey primarily emphasises servers as central points of focus. It is important to note that exigencies
can exist outside of this scope, in which the server is still responsible for identifying. Examples of
this include network connectivity diagnosis and being able to determine resource availability, such
as a remote API.

Although there are numerous interpretations as to what constitutes a computing environment the
majority of terms applied within this survey are taken from a single source [21]. Specifically, grids
are defined as voluntary collections of physical systems that share resources and typically consist of
multiple, heterogenous configurations . In these environments, churn–the rate at which membership
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changes– is expected to be high, and systems are expected to be managed in an ad hoc fashion. This
can translate to computing environments that do not require professional services to operate, such as
those housed in a data-centre. Conversely, clouds are collections of either real or virtualised comput-
ing devices that are centrally managed and controlled by a single entity. Devices that exist as part of
a cloud are more likely to be configured identically, housed in a data-centre, and operated by a large
professional or academic staff. Membership of devices in these environments are expected to have
high-availably constraints and be relatively static in terms of their rate of churn. A third category of
standard (i.e. ‘traditional’) is reserved for established environments. Typically, these environments
utilise multi-tiered architectures divided into front-end, middleware, and back-end sub-divisions
that exist absent of virtualised components. This category is intended to represent the most common
configurations for small, mid, sometimes large-size network-aware service applications.

It is assumed that computing environments may never be fully autonomous and that some prob-
lems will indefinitely require human interaction. Although this is not in keeping with the initial
proposal, at some point, it is perhaps unavoidable. For example, there are no known software
solutions to mitigate non-redundant hardware failures. However, diagnosing and escalating such
a situation to an administrator is still a desirable ‘self-healing’ behaviour. As such, systems that can
operate to the edge of their limitations are still considered to be successfully self-healing.

Lastly, recovery is assumed to be a more difficult problem than detection. ‘The final stage, auto-
mated re-mediation of a problem once it has been localised, is perhaps the most difficult.’ [11];
however, the detection of faulty states is necessary before executing recovery strategies, a fortiori.
This logic is the foundation upon which some aspects of framework maturity are gauged.

2. METHODOLOGIES

Self-healing frameworks leverage a diverse set of methodologies to autonomously detect and
recover from faults. This section discusses and compares self-healing frameworks based on three
primary aspects: management style, computing environment, and learning methodologies. These
properties are often interrelated and exist within each self-healing systems framework. As such,
they provide a way to compare the relative utility of each approach and establish a consensus
for comparison.

The remaining sections are organised as follows: Section 2.1 contrasts top–down and bottom–up
management styles that utilise self-healing frameworks. Section 2.2 discusses computing environ-
ments and contrasts different self-healing behaviours commonly found within grids, clouds, and
standard infrastructures. Lastly, Section 2.3 provides an overview of learning methodologies used
to autonomously detect and recover from faults. A distinction is made between supervised, semi-
supervised, and unsupervised methodologies, and in what environments they are most commonly
implemented.

2.1. Management styles

Managing complexity in computing environments has led to an abundance of architectural and sys-
tems management techniques. This survey focuses on two specific styles: top–down and bottom–up.
Top–down approaches organise systems into hierarchies by leveraging authoritative nodes. These
nodes control, propagate, and validate the behaviours of subordinate child-nodes within the com-
puting environment. Conversely, bottom–up methodologies operate in an ad hoc fashion, leveraging
neighbouring devices to make or suggest changes to configuration state.

Each approach divides computing environments into smaller, more management sub-components.
The division of systems into sub-components helps to address the natural complexity that arises
when managing multiple nodes. This includes aspects from change management, divisions in
workflows, and enacting policies to automate systems tasks. Depending on the management style,
however, the nature of the sub-components also changes to provide different advantages and disad-
vantages. It is often the case that management styles are selected based on computing environment
specific needs–a subject discussed further in Section 2.2.
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2.1.1. Top–down management styles. Top–down management styles are based on a hierarchical
infrastructure for accepting and enacting policies on child systems [22]. This is often realised
through the use of databases on parent-nodes to which subordinate nodes are instructed to periodi-
cally communicate with. By changing information within these databases, the collective behaviour
of systems communicating with the parent can be altered. Thus, rather than requiring an admin-
istrator to access each system individually, top–down methodologies can execute instructions
autonomously. Localising configuration changes to a single point has the benefit of reducing human
error during implementation and retaining a homogeneous configuration baseline within a com-
puting environment. Top–down management styles are useful in ensuring predictable recovery
behaviour and are widely utilised [23–26]. Conversely, centralised infrastructures often require
extensive pre-configuration and training before they can exhibit self-healing behaviour.

Rainbow [23,27] is a self-healing framework that leverages a centralised, top–down management
style. Utilising a set of ‘system concerns’, child-nodes are divided into clusters based on a similar
set of expected behaviours. These properties are collectively described as system ‘roles’ and are
maintained by a single Rainbow instance. An administrator then provides a set of constraints and
recovery plans, which the service uses to evaluate systems behaviour. Evaluations occurred using
a three-tiered, abstract architectural model that autonomously categorises systems behaviours. If a
fault is detected, the server’s configuration is then altered using recovery plans associated with the
system’s synthesised role and respective constraint model.

Rainbow’s approach to dynamic systems evaluation and its centralised methodologies are
arguably foundational by many subsequent approaches. This in includes the ability to utilise cen-
trally located recovery plans that are associated with the identification of specific faults [26] and the
use of recovery plans that have been created by systems administrators at run-time. Once enacted,
these results are stored for later use within a centralised database–a technique sometimes referred to
as case-based reasoning (CBR).

MARKS+ [24] leverages a comparable approach to Rainbow by using what it refers to as
healing manager nodes to select and implement pre-defined recovery plans. The recovery plans
are again evaluated based on a constraint model, and also include a service availability mapping.
This mapping, combined with a collection of behavioural unit tests, provides context to the eval-
uation of the constraint model. Systems determined to be in a faulty state are removed from
service until a ‘good’ behavioural context can be re-established via the return of the system to
a previously known working configuration or ‘state’. For MARKS+, healing managers facilitate
these behaviours by acting as a centralised orchestration service. This is similar to Rainbow in
that both approaches use an architectural perspective to facilitate resource discovery and recovery
behaviours.

The use of ‘behavioural skeletons’ is another perspective on understanding systems activities in
top–down infrastructures [25]. Behavioural skeletons are similar to models and consist of an abstract
collection of patterns that can be used to evaluate a system’s behavioural properties. When combined
with a set of constraints, or ‘contract’ [25], top–down methodologies can attribute context to sys-
tems behaviours without depending on pre-defined roles. This has the advantage of not requiring
developers to commit to pre-approved configuration states. Similarly, skeletons and contracts can
be used to provision a specific subset of information to child-nodes–such as configuration data or
faults. Whilst the child-nodes retain this information locally, a reduction in the need for ‘call-backs’
to management services remains present. This allows the systems to work more independently and
utilise external resources only when required.

The use of locally provisioned self-healing logic is similar to the two previous approaches in that it
leverages rule-based action policies to decide on recovery strategies. However, it differs in how sys-
tems are allowed to interact and provides an approach for leveraging more autonomous behaviours.
The latter is an artefact that has been extended in subsequent publications [28]. Rather than using a
series of contracts, SASSY handles infrastructure management through the use of dynamic model
generation called Service Activity Schemas (SASs). By aggregating these SASs, an architecture can
be dynamically mapped into subgraphs. This allows not only the systems to be modelled individually
but also the service architecture itself to be evaluated in a dynamic fashion. Consequently, using this
approach affords greater flexibility in compartmentalising faults within the environment than other
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top–down frameworks and provides more distributed management of resources than stand-alone
top–down service discovery methodologies.

MOSES [29] takes a similar approach to SASSY in that management of the service architecture
itself is leveraged in detecting and recovering faulty systems components. Like SASSY, MOSES
dynamically models the architecture in which it is operating. By using a position manager, this
framework determines if the service’s detected resources can be combined until a usable model.
Once completed, an adaptation manager addresses any faults or QoS issues encountered by using
a series of vectors abstracted from the services model. This information is then abstracted into an
ordered list of service priorities that can then be used to direct or redirect service flows–even in the
presence of conflicts.

The sampled centralised management styles exhibit similar self-healing logic when recovering
from faults. In most instances, the use of behavioural testing is implemented with a contextual
reference–such as a constraint or systems model. This is further expanded upon by user validation
(in the case of supervised methodologies), or by using predictive measures to discretely synthesise
recovery solutions. Furthermore, the use of these techniques in a centralised orchestration service
affords many benefits–including the ability to retain control of the infrastructure from singular man-
agement points and being able to leverage re-use of recovery strategies [23–28]. This is in contrast
to systems that inherent or infer self-healing behaviours, discussed further in Section 2.1.2. The
learning methodologies for each management style is discussed further in Section 2.3.

2.1.2. Bottom–up management styles. Bottom–up management styles emphasise ad hoc
interaction between systems. Systems within these environments typically infer self-healing
behaviours based on independent sampling, either of the service infrastructure at large or
neighbouring systems, and exhibit a greater degree of administrative autonomy. They represent
a direct alternative to approaches that leverage centralised management and typically demon-
strate more exploratory behaviours. This type of systems management can require less initial
configuration than centrally managed approaches, but at the cost of predictability and individualised
control.

Although ad hoc systems management comes in a variety of forms, this survey focuses on three
distinct approaches: system-to-system [30–32], localised healing [33–38], and those that utilise
atomic interfaces to synthesise virtual resources [39]. System-to-system frameworks are capable
of making changes by sampling from or delegating to neighbouring nodes. This is contrasted
by localised healing frameworks, which avoid administering other devices and using information
obtained from neighbouring systems to self-elect behavioural modifications. Atomic frameworks
exist as a hybrid of these two approaches by exposing their resources in an non-holistic, read-only

Figure 1. Learning methodologies versus management styles.
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Figure 2. Management styles in self-healing frameworks by year of introduction.

fashion. They can either self-elect or suggest changes to external devices, or directly access external
resources as if they were locally present.

In a system-to-system infrastructure, authoritative actions are delegated dynamically through the
analysis of environmental knowledge. Examples include frameworks that observe both the perfor-
mance and service availability of neighbouring devices [31, 33, 34]. In the case of Embryo-ware, a
set of administrator supplied configurations provides each system with the ability to autonomously
adapt from a ‘totipotent’ state into one of several pre-specified roles. This behaviour is initiated
based on each systems local perception of the over-all performance and relative needs of the ser-
vice infrastructure. If a service has reached a capacity threshold for its front-end web-services, for
example, and the system has a totipotent configuration, it can dynamically adopt a web-role and join
the front-end pool to increase capacity. Once the service has been evaluated as no longer needing
additional front-end resources, it then reverts back to its neutral state.

By treating systems as modular components, Embryo-ware addresses a key problem present in
ad hoc infrastructures–drift in baseline systems configuration. As systems continue to operate, they
naturally encounter events that create unique systems configurations and states. This can create sce-
narios where systems are difficult to predict and can reduce the effectiveness of existing self-healing
behaviours. By resetting the local system’s state to pre-defined known working configurations, diver-
gence in systems operations is dramatically reduced. This allows for techniques that depend on
assumptions related to the systems behaviour to continue to be effective well after initial deploy-
ment. It also allows for servers to be treated as dynamic resources within the service architecture
and to transparently address the workloads associated with pre-defined groups of individual service
components.

Transparently updating service components is an approach also used by OSIRIS-SR–an extension
of OSIRIS [30] and Chord [40]. However, unlike Embryo-ware, OSIRIS-SR uses a transitive man-
agement service to create ‘supervisor nodes’ that facilitate self-healing behaviours. These nodes
leverage a distributed hash-table to establish service parity and to facilitate work delegation of a
given resource. This allows service availability to be preserved even in infrastructures with high
rates of churn and for systems to orchestrate service flows whilst addressing faults–all without a
centralised infrastructure.

Rather than shifting a system’s role or instantiating a supervisory service, systems within the com-
puting environment may also have the ability to assign work directly to each other [32]. VieCure
utilises an activity management service to understand local and remote service state. Like Embryo-
ware, this framework is installed locally on each system and configured by a set of policies that
guide self-healing behaviours. The policies combine ‘interaction patterns’ and constraints into a
‘behaviour registry’–a dictionary of recognisable systems states that are used to indicate when self-
healing behaviours are required. If a constraint violation occurs, the system can choose to either
heal or delegate work to a neighbouring node. VieCure, OSIRIS-SR, and Embryo-ware operate
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holistically. The expression of their self-healing logic is based on the evaluation of their respective
computing environments as a whole. However, not all ad hoc frameworks operate in this fashion.

Atomistic perspectives, such as the General Purpose Autonomic Computing framework
(GPAC) [39], view and evaluate systems resources as individual components based on ‘resource
definition policies’ that are supplied by an administrator. The benefit of atomistic components is that
they are usable remotely by other systems. To accomplish this, GPAC first builds a model of local
systems operations by utilising a four-stage control loop similar to MAPE+K. The model is pop-
ulated by querying either a remote or locally running service that discovers resources. Discovered
resources are then integrated with the model information by a policy engine to create the afore-
mentioned ‘resource definition policy’. This allows resources to be directly accessed, regardless of
physical location.

Atomising computing environments represents a unique approach to the delegation of work.
GPAC coordinates resources in a transparent fashion to mitigate faults rather than assigning tasks
directly. Sharing resources leads to a natural integration between systems and illustrates a unique
approach for mitigating faults remotely. This comes with the caveat that systems must be able to
accept changes to their configurations from neighbouring nodes. In some computing environments,
this property is undesirable. For these cases, localised healing strategies are preferred over other
approaches.

Localised healing frameworks avoid directly administering other devices. Instead, each frame-
work instance is exclusively responsible for its local system’s health, resources, and configuration
state. This includes determining when issues are caused by local or external factors. Localised faults
are mitigated in a similar fashion as other frameworks. A set of constraints and policies are provided
by administrators, which the systems use to detect and recover from faults. However, faults deter-
mined to be external to the system are addressed much differently. External faults are either ignored,
referred to another system, or, if possible, mitigated locally. These approaches are not designed to
address the source of the error but to maximise the availability and performance constraints of the
computing environment–often within pre-defined guidelines.

For example, lowering the fidelity of content being served by front-end web-servers is one way
to meet to performance constraints [41]. If a server cannot deliver content at the rate expected–for
example, because of too many concurrent connections–it can elect to reduce the volume of data
sent for subsequent data requests. This approach does not directly address the state of other systems
but instead focuses those issues that can be resolved locally. Frameworks that focus on localised
self-healing techniques often use ‘roles’ to facilitate the re-use of self-healing logic and to meet
constraints [36, 41]. This is particularly useful in self-healing systems that operate within a single
tier of a computing environment.

WS-DIAMOND [36] is a localised healing framework specifically developed for front-end web-
services. It uses two concurrent control loops to diagnose and recover from faults. The ‘inner’
control loop focuses on the mitigation of faults that prohibit basic systems operations. This can
include resources that are critical to the system’s role and the state of services. The outer con-
trol loop addresses issues related to QoS. If a system is not capable of performing within a set of
constraints, an error is raised that the outer control loop attempts to mitigate. Other frameworks
have mimicked the QoS approach, but sans use of multi-tiered control loops [42]. However, the
basic approach used in these systems are essentially identical. Each failure instance is treated as a
separate case from which to analyse the results of systems configuration tests. This allows faults
to be categorised based on the systems role and located using differential analysis of the systems
configuration data.

Determining the source of an error is a non-trivial process. Systems configurations are complex
sets of information and often contain relationships between features and properties that are not
easily classifiable. Dynamic systems modelling represents one approach for understanding correla-
tions between faults and configuration state. In localised healing frameworks, such as Plato [37],
UBL [35], and Shadows [38], these approaches have been used to categorise and compare the state
of a system with historical information, such as systems configuration or performance data. This
follows in the footsteps of other frameworks, such as Rainbow, that utilise architectural modelling
techniques at system run-time.
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Rainbow, Shadows, UBL, and Plato all leverage a set of operating constraints and policies that
are used to periodically evaluate service health. Whilst the systems operate in a state that meets
both their constraints and policy guidelines, they are considered to be in a ‘known-good’ state. In
the case of Shadows, UBL, and Plato, these states can be leveraged to build models of typical sys-
tems operations. If the system is not operating as expected, a comparison between previous and
current behavioural models is executed. This allows for differentials to be discovered between sys-
tems behaviours and recovery methodologies to be synthesised, rather than requiring them to be
proscribed by administrators.

Recovery strategies for these frameworks operate with substantial difference. Plato utilises
genetic algorithms to search for optimal systems configurations and enacts recovery methodology
via reconfiguration. This is carried out by pre-computing configurations in a simulator and evaluat-
ing the results against a set of fitness criteria. The results of each configuration undergo a differential
analysis that examines the health and performance of various systems models.

Shadows uses a model repository to determine a recovery strategy. The repository is popu-
lated via two mechanisms–a code extraction methodology and a CBR-based approach similar to
those described by Carzaniga [43], Shang [23], and Hassan [44]. However, rather than requiring
administrators to update the repository manually, Shadows automatically builds role-based recovery
solutions without human intervention. This is accomplished by using a combination of statistical
and predictive modelling to synthesise configurations and evaluate potential solutions to detected
faults. Once a solution has been found, it can be validated and shared throughout the environment
where behaviours are determined to be similar. This unique use of CBR allows the framework to
leverage the advantages of ad hoc systems management without depending on centralised infrastruc-
ture or human administrator to approve new recovery methodologies. By removing the supervision
requirement of this CBR approach, anomalies can be detected, which were not previously known.

UBL uses a different approach by leveraging a self-organising map (SOM) to train the system
to understand failure, pre-failure, and working states. This technique allows systems to build their
own recovery solutions at run-time by leveraging a vector-based approach for aggregating systems
configuration and performance data. Once the information has been obtained, it is then classified
and subsequently analysed (i.e. ‘mapped’). Faults are then inferred through a differential analysis of
changes in both behaviour and configuration state of the system in question.

The management style of a self-healing framework is often related to its environment. In the case
of ad hoc systems administration, the behaviours exhibited are inherently less predictable than those
that leverage centralised methodologies. This comes as a caveat of allowing systems the ability to
independently explore solutions outwith those having been directly supplied. Specifically, systems
that leverage a bottom–up management style appear to be more prone to use semi-supervised and
unsupervised learning techniques to achieve dynamic recovery solutions. Whilst this approach is by
definition more autonomous, it does not necessarily mean that it is more usable. Some environments
may be required to use only proscribed recovery solutions to address specific service aspects–such
as risk management or high availability requirements. In such cases, solutions such as Embryo-ware
may be better suited than those of UBL, Plato, or Shadows.

Choosing a management style for a self-healing framework is multi-faceted problem and can
depend on a number of extraneous factors–such as the environment in which the system is intended
to operate acceptable levels of downtime, or expected resource utilisation (Figures 3 and 2). The
following diagrams illustrate the frequency in which a specific management styles are applied based
on computing environment and a trend in the usage of top–down management styles. At present,
these centralised approaches appear to be more commonly leveraged within environments where
systems membership is stable–a topic further discussed in Section 2.3 (Figure 5). Likewise, the num-
ber of self-healing frameworks utilising this approach is continuing to increase (Figure 4). Further
to these topics, the attributes between environments and learning methodologies, and associated
self-healing behaviours are discussed further in Sections 2.2 and 2.3, respectively.

Top–down management styles are the primary choice when a computing environment is owned
by a single entity. However, when membership is shared by multiple third parties, a shift can be seen
in how the environment is managed. In the latter case, systems are more likely to be managed in an
ad hoc fashion.
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The number of self-healing frameworks that leverage top–down methodologies is continuing to
increase. This comes despite the emergence of hybrid computing environments, and advances in
predicting systems membership.

2.2. Computing environments

Computing environments are a collection of resources used to manage and facilitate a given set of
systems. Depending on the needs of the systems, computing environments can have different infras-
tructures and assets. This survey focuses on three types of infrastructures: standard, virtualised, and
ad hoc. Each infrastructure type represents differences in how self-healing frameworks access, cat-
egorise, and utilise resources. These differences can have profound impacts on the approaches used
by self-healing frameworks and their respective goals.

Standard infrastructures typically comprised three categories (i.e. ‘roles’) when discussing sys-
tems responsibilities: front-end, middleware, and back-end. Front-end systems are responsible for
establishing and maintaining connections to clients; middleware provides facilitating services such

Figure 3. Management styles versus computing environments.

Figure 4. Computing environments with self-healing frameworks by year of introduction.
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as encapsulation, transport, or orchestration; and back-end systems are responsible for the provision-
ing, storage, and parsing of information. This division of responsibility is the basis for establishing
reusable code in many self-healing frameworks–regardless of computing environment–and pro-
motes scalability by organising systems into reusable, interchangeable components. This allows
for extensibility in behaviours and interchangeability of failed devices.

Virtualised infrastructures emulate physical assets by using multi-system resource management
techniques. Instead of building a physical machine with a specific role, resources are dynamically
allocated from a collection of physical machines to build virtualised ‘instances’. These instances
operate in the same fashion as physical systems. However, as the hardware itself is a software
manifestation, ‘physical’ changes can occur more rapidly and in a more autonomous fashion
than standard infrastructures. In addition to rapid reconfiguration, virtualised infrastructures handle
change control exceptionally well. This is primarily due to the use of systems clones (i.e. images)
when instantiating new instances. Images allow for quick replacement, re-provisioning of faulty
systems, and fast comparisons between systems’ configurations. These properties make virtualised
infrastructures heavily leveraged in cloud computing environments.

Standard and virtualised infrastructures share several key properties. They are often owned or
operated by a single entity, have low rates of churn, and typically leverage centralised manage-
ment styles (Section 2.1.1). These aspects are vital in meeting established minimum operational
requirements such as availability, reliability, and performance expectations–sometimes referred to
as service-level agreements (SLAs). However, there are computing environments that do not share
or require these properties. In these cases, self-healing frameworks leverage ad hoc infrastructures.

Ad hoc infrastructures are unique from other approaches in that systems membership is volun-
tary. This property is related to ad hoc management styles, which enable systems to self-elect
behaviours (Section 2.1.2), but is different in that it refers to the association a system has to a
specific environment. The ability for systems to join and leave an infrastructure has advantages
in that they are better suited for some distributed computing uses and can potentially operate at
lower costs. The transient nature of ad hoc infrastructures pose unique challenges for self-healing
frameworks. Notable examples include higher rates of churn [21], issues with reputation [45],
security [46, 47], multi-party administration [48, 49], and a lack of baseline configurations
between systems[50], amongst others. In general, each framework instance must act as an author-
itative point and evaluate its infrastructure independently. This is sometimes referred to as
self-elected behaviour.

Computing environments sometimes comprised multiple infrastructure types. Some environ-
ments, for example, may have systems that are capable of interacting with each other in an
ad hoc fashion but may also depend on a centralised service model [33, 38]. In most cases,
self-healing frameworks have been developed to meet specific needs within a single tier of an
infrastructure–such as a front-end web-service [26, 36, 41, 42]. Nearly all self-healing frameworks
that are designed to operate within a single tier are capable of being implemented in a virtual
infrastructure. However, not all self-healing frameworks are restricted to one area of responsibility
[23, 33]. The most common tier-specific self-healing frameworks are those that focus on front-end
systems [26, 36, 41, 43].

Systems that approach front-end web-services utilise a variety of approaches, including multi-
tiered control loops [36], fidelity reduction [41], and behavioural modelling [26], amongst others.
These self-healing frameworks are easier to develop and can promote an intermediate stage for
adapting existing infrastructures towards stronger administrative automation. Each system in a
standard infrastructure must be maintained individually. This has several notable consequences
including increased provisioning times, the potential for inconsistencies in configuration and imple-
mentation, and a natural deviation in configuration baselines overtime. These problems have been
partially addressed by self-healing frameworks through the use of CBR and centralised manage-
ment styles [24–26, 32, 38]. Centralised approaches leverage an often human supplied correlation
between root causes of faults and their respective recovery strategies. As the expected outcome
is based upon assumptions of previous state, these approaches can become less effective as con-
figurations diverge. As changes occur within separate infrastructures outside of the control of the
framework, this problem becomes more complex.
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Virtual infrastructures help to address baseline configuration deviations, dynamically provision
new resources, minimise the impact of external infrastructure changes, and improve deployment
and recovery times. The majority of these advantages stem from the use of images, which, as previ-
ously mentioned, help to maintain standard configurations between systems. Virtual infrastructures
also come with several major disadvantages, the largest being cost to operate, proprietary standards
for larger implementations, and challenges for physical expansion. However, virtual infrastructures
provide useful properties to frameworks that use tier-based and search-space approaches to resolving
faults [37, 38].

Frameworks that leverage search space methodologies require one of two conditions to occur
before executing self-healing behaviours: either an acceptable solution must be converged upon or
all available resources are exhausted. In the latter case, the framework picks the best solution found
[35, 37, 51]. Standard environments limit the availability of resources to the physical capabilities of
the system upon which the framework is instantiated. Virtual environments provide an advantage
by allocating resources beyond the immediate instance. This promotes the self-healing behaviours
from break–fix objectives to optimisation strategies (e.g. [29, 37, 52]).

In addition to optimisation, the dynamic allocation of resources is useful for promoting stabilisa-
tion in computing environments. There are several self-healing approaches that explore stabilisation
in standard environments including dynamic role-adoption [31, 33], resource discovery [23, 27],
resource policies, atomisation [39], and reduction in content fidelity [41]. In some cases, virtual
infrastructures demonstrate comparable advantages by using instancing. Embryo-ware’s ability to
use ‘totipotent’ systems to shift to and from needed roles is comparable to virtual infrastructures
ability to dynamically spawn new server instances– assuming an image exists for the needed role
and a feedback mechanism is actively monitoring service state. Both approaches represent a way to
preserve QoS in an environment and minimise the need to reduce content fidelity.

Virtualisation universally addresses a major advantage of Embryo-ware: the ability to use a single
subset of resources to address multiple roles within a service or computing environment. This con-
cept is difficult to implement in standard, multi-tier infrastructures. Systems that are organised into
tiers have external considerations when communicating with other devices. This includes network-
ing configurations, security measures, and other exigencies of a practical nature that are outwith the
control of the framework. With standard and virtualised infrastructures, the barriers between tiers
are often preserved. One approach for avoiding these issues is to treat the computing environment
as a ring [30, 31, 40]. However, it is worth noting this effectively converts the standard tier-based
environment into an ad hoc infrastructure.

Ad hoc infrastructures avoid many of the organisational requirements of standard and virtual
infrastructures. In ring-based approaches, systems are often required to accept a centralised point of
management and be operated within a confined set of conditions, such as a specific configuration or
role. In ad hoc infrastructures, systems are defined by their ability to carry divergent configurations,
and self-elect behavioural changes and states. These properties help to mitigate security issues, high
rates of churn, diversity in systems configuration, and multi-party administration. Although this sur-
vey contains no frameworks that have been explicitly designed for entirely ad hoc infrastructures,
several approaches expect and utilise ad hoc self-healing behaviours [31, 33, 35, 37].

These behaviours range from self-electing systems roles [31, 33], to aggregating resources
between systems [39]. In the former case, each system evaluates the state of the service indepen-
dently by querying neighbouring devices. If a system chooses to adopt a new role or configuration, it
is ultimately centrally managed as the pre-specified roles must be provided to each individual system
before they can operate. However, the collective behaviour of each individual system evaluating the
service demonstrates an emergent approach to managing the infrastructure health. Experiments with
biologically inspired paradigms [53] further suggest that gradients, fields, and other ‘spatial’ struc-
tures [54] can offer robust adaptation to local challenges and failures and can act as a programming
platform on which to construct complex applications.

Plato [37] and UBL [35] demonstrate this perspective by leveraging systems that can holistically
self-evaluate service state using biologically inspired computational approaches. These approaches
have distinct advantages in that systems need not be provided with pre-specified recovery strate-
gies and are specifically designed to exhibit self-adaptive processes through environmental analysis.
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This affords systems using these frameworks a better suitability towards environments where ad
hoc management styles and infrastructures are in place–such as the ability for self-healing systems
frameworks to autonomously label and manipulate their own data (Figure 1). These approaches
include, chiefly, genetic algorithms and artificial neural networks. However, search and probabilis-
tic methodologies lack the stable, predictable nature of approaches that leverage periodic human
intervention.

Computing environments and the services they are housed are interrelated. Systems that have
the ability to operate holistically require different supporting resources than those that operate in
an atomistic fashion, or centralised fashion [20]. The self-adaptive behaviours of systems leverag-
ing ad hoc methodologies appear to be more advanced with respect to self-autonomy than other
approaches. This is evident in how systems are being implemented and their ability to learn new
solutions to recover from problems without human intervention. This claim is further supported
by the abilities systems have in their learning capabilities as the holistic logic of evolutionary
approaches show further advancement and costs compared to the dictionary style approaches of
CBR and other centralised learning methodologies.

The following diagrams illustrate the relationship between computing environment and learn-
ing methodology. Although supervised approaches are still the most common of those surveyed,
there is a higher propensity of unsupervised learning in ad hoc computing environments (Figures 3
and 5). Additionally, self-healing systems research appears to be shifting towards cloud and
virtualised technologies.

The use of supervised learning remains the most common approach to self-healing systems frame-
works for labelling training data. This is ubiquitous regardless the computing environment the
framework is expected to operate in. However, these approaches seem to exhibit less autonomy
in both detecting and recovering from faults (Section 2.3).

Self-healing frameworks are being developed primarily for use in traditional, n-tier, or cloud com-
puting environments. However, some hybrid solutions are also emerging, which combine aspects
that account for dynamic computing environments. This may represent a new research direction.

2.3. Learning methodologies

Self-healing systems frameworks rely on heuristic algorithms to correct or change behaviour without
human intervention. In order to maximise their effectiveness, learning methodologies that optimise
when and how instructions are executed have been developed. These methodologies often utilise
recursive, evolutionary, or close-control loop programming techniques to improve and evaluate
behaviours. In each of these cases, a feedback mechanism is used to determine both the validity
and efficiency of a specific solution. The degree of required human interaction within a feedback
mechanism is referred to as supervision.

Self-healing frameworks can be categorised as being fully supervised, semi-supervised, or unsu-
pervised. Traditional definitions of these terms usually emphasise when or how a system classifies
its learned behaviour–either manually or dynamically–and whether or not data utilised by a spe-
cific algorithm have been labelled. As self-healing frameworks can contain multiple learning
methodologies–each with varying degrees of supervision–cataloguing a framework’s learning tax-
onomy into a single category is challenging. The primary intent of IBM’s Autonomic Computing
Initiative is to reduce the amount of required human interaction for a set of systems [7, 11, 18, 55].
Therefore, this survey focuses on the most evident factors in evaluating and simplifying their clas-
sification: the frequency of required human interaction, and whether or not the framework can
autonomously extend its self-healing behaviours. The latter component is to address changes in
the state of a system and its ability to respond dynamically to its environment. It is accepted that
computing environments, in general, are not static entities. As needs and circumstances change, so
must systems be ready and able to adapt.

The most common approach to self-healing systems is to use a fully supervised methodol-
ogy [23–26, 28–31, 42]. Supervised methodologies can require frequent interaction and extend
their self-healing behaviours only upon human intervention. This allows for validated, controlled
configuration updates and provides the least amount of uncertainty in systems behaviours [56–58].
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The most frequent implementations of supervised learning are CBR methodologies. CBR typi-
cally utilises a database of prescribed recovery plans that are correlated to specific faults or events.
When a system encounters an error, it queries the database for recovery instructions. In those
circumstances where recovery instructions have not been previously included, the framework will
ask an administrator for a solution, or refer to a default set of actions. CBR approaches extend
their behaviour by storing these additional solutions in their databases. Typically, the requirement
of human supervision as a required part of the self-healing logic produces the natural caveat of only
partial automation.

Rainbow takes supervised methodologies a step further by leveraging dynamic resource
discovery with prescribed, role-based recovery logic. Using this approach, computing environments
are divided into recognisable components that can be used to dynamically build an architectural
model of the service infrastructure. Using this model, systems and services are categorised within
a specified role or type, whilst the architectural model continues to choreograph service interaction
and defines expected behaviours. These components are provided by developers before deploy-
ment. Once errors are detected, they can be mitigated using the architectural model to restore
the service to a known working state or, if unsuccessful, an administrator can update the model
at run-time.

WS-DIAMOND and GPAC take similar approaches to Rainbow in that a model is specified to
which a system’s performance is evaluated. However, rather than monitoring an entire service, each
system is managed independently. As previously mentioned, WS-DIAMOND does this by instanti-
ating two concurrent control loops to monitor and correct systems behaviours. Dividing the recovery
logic into separate components allows the framework to prioritise and isolate recovery strategies.
This is naturally conducive to goal and utility policy implementation within the specified model.
A number of extensions to this framework have seen improvements to its detection and recovery
logic‡ including the ability to monitor workflows, orchestrations, and choreographies.

The GPAC contrasts this approach by utilising ‘resource definition policies’ to autonomously dis-
cover and atomise systems components into network accessible objects. This non-holistic approach
allows the framework to access resources on remote systems as if they were locally present. When
combined with a model of the service, systems can act transparently to heal and optimise the ser-
vice architecture in a semi-supervised or potentially unsupervised fashion. These policies can also
be used to tier service performance based on priority of behaviours or resources.

Performance tiering is a self-healing methodology used to divide systems and service health into
levels [38, 41]. These levels in turn are used to understand QoS changes and instantiate behaviours
that maximise the usage available resources. Arguably, the most direct approach to defining ser-
vice levels is to use statically assigned resource constraints. Each level corresponds to a set of QoS
metrics or fitness criteria that tells the system when to dynamically reduce content fidelity [41]. Pri-
marily developed for front-end web-services, static service tiering requires a human-supplied policy
to determine when content fidelity can either be reduced or increased. In contrast, allowing poli-
cies to dynamically set thresholds for self-healing behaviours can have more autonomous results
[29, 38, 42, 50, 59]. The Shadows framework, for example, uses a set of SLAs and utility policies
to automatically generate behavioural expectations of a system. This allows the system to perform
more in line with human-readable goals, such as cost, average service time, and other criteria instead
of discrete metrics. It then combines this information with historical performance data to provide
internal revalidation of recovery solutions. Using a time mean expectations in behaviour can allow
for elasticity versus pre-defined QoS metrics.

In a supervised framework, the revalidation of a new set of expectations are normally completed
by a member of technical staff. This occurs in a similar fashion as that being leveraged by Shadows:
SLAs are compared against a system’s overall performance and combined with historical data–such
as application logs and configuration files. The addition of correlating events with systems faults
provides an advantage in contextually evaluating anomalies [32,38]. By sampling the system at key
intervals, faults can be associated with specific changes and, ideally, their respective sources. This

‡http://wsdiamond.di.unito.it/status.html
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is useful for establishing a root-cause analysis and to map similar events with recovery solutions–
sometimes referred to as event driven monitoring [35].

Event driven monitoring combines a complex set of sensor classification algorithms with
run-time analysis techniques for isolating anomalies from normal or established patterns of
behaviour. These approaches can range from the reactive use of simple exponential smoothing
algorithms in a time series prediction [52], to pro-active prediction of states [60]. VieCure [32]
is a CBR-style framework that leverages event detection in addition to direct analysis of metrics.
Instead of directly mapping faults to recovery plans, VieCure looks for deviations in expected sys-
tems behaviours that can indicate when self-healing is needed. Events can constitute a series of
incidents within a log, or a set of incidents that exhibit either a certain order or rate of occurrence.
If an event is determined to coincide with a fault, then a recovery strategy is selected from a known
set of working solutions. As expected, unknown events and faults require supervision in the same
manner as other CBR frameworks.

Periodic interaction by administrators remains a caveat of supervised and semi-supervised self-
healing frameworks. However, some frameworks have demonstrated an ability to dynamically elect
self-healing behaviours without this requirement [33–35, 37, 59, 61]. Chiefly, these methodologies
leverage biologically inspired approaches including genetic algorithms [37, 61], artificial neural
networks [35], and totipotent behaviours [33, 34, 62, 63]. Each of these techniques has different
properties that related to their suitability at solving particular tasks–from producing candidate solu-
tions within a given search space [51] to the autonomous classification of sensory information [64].
These approaches range in degree of suitability-based and how much risk and resource commitment
a specific computing environment or service infrastructure is willing to accept.

Using a genetic algorithm, Plato can search for and mitigate faults based on correlations between
behavioural properties and configuration data. This is a framework that dynamically produces
self-healing solutions based on a stochastic search methodology that comprises multiple candi-
date solutions [37, 51, 61]. By comparing the operational SLAs and policies with the performance
of the candidates individually, a degree of fitness can be ascertained from the candidate. Once
the candidates have been evaluated, their individual features are analysed and correlated to pro-
duce new candidates. This occurs until either preset resource constraints are met or an optimal
solution is found per the associated fitness functions. In this instance, the utility functions in pre-
vious frameworks are analogous to the properties that are emphasised by the fitness functions in
genetic algorithms. Each respective function provides the same base purpose: to translate and enact
human-readable goals into systems behaviours. Examples of these goals include cost minimisation,
application priorities, or performance traits.

This approach allows Plato to stochastically search for and build recovery strategies providing a
critical advantage over other methodologies. Rather than requiring prescribed recovery solutions,
either during development or run-time, Plato can autonomously produce viable self-healing solu-
tions. However, there is no assurance that an acceptable systems configuration will always be
found using this methodology, nor that it will be optimal. This is as expected [37] and inherent
to the nature of existing search-space methodologies [51]. It is also computationally costly and can
produce behaviours that would not be anticipated. Thus, a high degree of risk can be associated with
this approach.

Complimentary to using genetic algorithms, UBL operates by using historical configuration data
to autonomously train a specific type of unsupervised artificial neural network called a SOM [64].
Features in the historical configuration are converted into vectors, which are then used as input for
predicting behaviour and feature state. This information helps to analyse the validity and impact on
a system’s behaviours when configuration changes occur. Once the SOM is trained, the system can
then synthesise new, valid systems configurations by predicting which features are causal to specific
faults. This approach leverages a smaller search space than the genetic algorithms used in Plato and
consequently presents less risk and potentially divergent systems behaviours. However, UBL dis-
plays some limitations in exploring new configurations and seems to produce a stronger likelihood of
local minima in configuration synthesis. This is represented in the purposes of these two approaches
being somewhat divergent: the ability to synthesise new systems configurations upon fault and the
prediction of failures within distributed infrastructures. As yet there exists no research comparing
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the effectiveness of combining these two approaches, ‘feature locality’ continues to display positive
results [50, 65]–a topic discussed further in Section 3.

Separate from either of these approaches is the transparent management of resources within a
service infrastructure via dynamic role or service adoption [31, 33]. In each of these approaches,
systems use information about the general state of the service infrastructure to dynamically elect
a localised reconfiguration. However, these approaches differ by allowing systems to dynamically
adopt roles through self reconfiguration, in the case of Embryo-ware [33] and the self-instantiation
of localised management services [31].

As previously mentioned, these systems are initially instantiated with a representation of the
service, a set of roles, and an ability to query service state on remote systems. Using these three
components, the framework is then able to dynamically adopt new configurations or return to an
original, neutral configuration based on service performance. Any device found to be without a
base set of configuration data is automatically provisioned with the latest ‘genome’ via a replication
agent. This provides a measure of self-configuration and provisioning; a process typically referred
to as a separate challenge in Autonomic Computing [7, 11]. The adoption of new roles is facilitated
via a differentiation agent that tracks and contextualises roles and expected functions. The differ-
entiation agent must then self-elect a role–based on its independent understanding of the state of
service.

This approach is contrasted by OSIRIS-SR, a framework that leverages Chord [40] to produce
a Safety Ring to manage service infrastructures [31]. OSIRIS-SR operates by using supervisory
systems roles to monitor and recover from failures in resource availability. These systems leverage
meta-data to build an understanding of neighbouring systems behaviours and then aggregate that
information across multiple supervisory nodes. This is similar to Embryo-ware where only neigh-
bouring nodes are monitored and influence the ability of those systems to adopt roles. What makes
this approach unique is that any system can elect to become a supervisory node. This is useful for
ensuring availability and reliable service management in infrastructures where systems membership
can change without notice [66].

Both Embryo-ware and OSIRIS-SR can autonomously change the behaviours of its component
systems at run-time, but only using information supplied at design time. There is no logic within
either approach that will autonomously generate new recovery strategies or roles. However, this
affords both frameworks the benefit of minimising risk for unexpected systems behaviours and
maximising available resource utilisation. In the case of OSIRIS-SR, this can be particularly useful
if implementation occurs in mobile networks or other environments where systems membership is
expected to be transient.

The following diagrams illustrate trends in the management styles associated with self-healing
frameworks and their respective learning methodologies are outlined along with adiagram of
their introduction by year. There are two key properties immediately evident within these fig-
ures: (i) self-healing frameworks research is driving towards solutions that utilise supervision;
and (ii) the learning methodology leveraged by the self-healing framework appears to be linked
to its management style. Additionally, if we extrapolate this information with that contained in
Figure 3, it seems evident that the progression towards less supervision is being driven chiefly in ad
hoc computing environments. However, because of the sample size of grid and P2P approaches
being relatively low, this may not be immediately evident (Figure 4). Instead, developments
in this area appear to be occurring in cloud computing and other environments that leverage
virtualisation.

The learning methodologies leveraged in self-healing systems appear to be strongly correlated
with their respective management styles. In the case of top–down, (i.e. centrally managed) styles,
self-healing frameworks overwhelmingly support the use of supervised learning. Conversely, sys-
tems that operate in an ad hoc fashion (i.e. ‘bottom–up’) fashion are substantially more likely to
leverage semi-supervised or unsupervised approaches.

Self-healing systems frameworks are showing greater autonomy in their learning behaviours.
In the last 10 years, we have seen the number of self-healing frameworks that leverage super-
vised approaches decline, whilst those with either semi-supervised or unsupervised techniques are
increasing (Figures 5 and 6).
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Figure 5. Computing environments versus learning methodologies.

Figure 6. Learning methodologies in self-healing frameworks by year of introduction.

3. DISCUSSION

Self-healing systems methodologies are becoming more autonomous but remain dependent upon
either the required periodic human interaction or the acceptance of uncertainty in systems
behaviours. This finding comes as self-healing methodologies being to specialise based on external
factors such as their intended computing environment and respective management styles. Notably,
a framework’s specialisation has been shown to provide distinct advantages in autonomously iden-
tifying and resolving faults. These advantages play pivotal roles in understanding how self-healing
frameworks are evolving. Furthermore, many approaches display behaviours that are not universally
desirable–self-healing approaches are diverging based on their specialisations. This is a concept
that until now has not been explicitly addressed within the field. By contrasting where self-healing
frameworks are being implemented, an understanding is gained of where self-healing systems are
making progress and towards which specific problems.

Self-healing systems frameworks as categorised by supervisory requirement, computing environ-
ment, and expected management style. In some cases, frameworks exhibit abilities to operate under
multiple assumptions–these incidents are represented by concurrent bullets within (Figure 7).
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Figure 7. Summary of findings: self-healing systems frameworks.

The intended computing environment of a given framework is a foundational factor in eval-
uating the success of its self-healing behaviours and has produced a divergence in the types of
self-healing systems that are being developed. Environments that require a greater degree of con-
trol of its systems often exhibit centralised management techniques [23, 24, 26, 28–30, 32, 42, 59].
These approaches are evaluated based on how predictable their behaviours are and often intention-
ally build in a requirement for human intervention. Conversely, frameworks that operate in ad hoc
infrastructures [31,33,35–37,39] are often expected to exhibit behaviours that do not require human
intervention and in some cases to synthesise new self-healing strategies. This result is an artefact
of computing environments having inherently different properties, exigencies, and requirements.
The result has been that self-healing frameworks have begun to develop specialised strategies that
address each of these factors explicitly.

Evidence of specialisation in self-healing strategies is becoming increasingly more common as
frameworks exhibit hybrid approaches for mobile [31] and centralised computing environments
[33]. These approaches place a specific emphasis on leveraging different self-healing strategies
based on the environmental suitability of the approach at run-time and by anticipating resource
availability. Notably, resource prediction is being leveraged more often where assumptions cannot
consistently be made about the state of computing environment– particularly where resources are
transient [31,39,40,66], or virtualised [35,67]. In these situations , self-healing frameworks leverage
multiple concurrent strategies to address greater degrees of systems volatility. Likewise, frameworks
have leveraged various approaches for identifying and mitigating faults based on local and remote
observations within their respective environments [26, 38, 68].

Although the approaches used by self-healing systems are varied, there are trends as to which
methodologies are being leveraged and under what circumstances. Systems within environments
that exhibit a high degree of churn are more likely to leverage ad hoc management styles
[30,31,40,66] and learning methodologies that require less supervision [33,35,37,59]. Conversely,
frameworks that do not have stable systems membership are more likely to utilise a centralised
form of systems management [23, 25, 26, 29, 42, 59] and exhibit supervised or semi-supervised
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learning methodologies [26–29, 31, 32, 36, 38, 41, 42]. The predictability of a self-healing frame-
work’s actions is crucial in identifying operational requirements (i.e. SLAs) and is a defining factor
in what behaviours are allowed or desirable in its respective computing environment. As behaviours
are nearly solely defined by learning methodologies, it is clear that the relationship between man-
agement style and environment is linked with the degree of supervision required for its continual
operation.

Using an ad hoc management style allows self-healing frameworks to leverage more autonomous
strategies and learning methodologies. However, systems that engage in self-elected behaviours–
particularly those that have not been previously vetted–have been shown to be inherently more risky
when attempting to meet operational goals and less likely to produce reusable solutions [56–58]. It
is for this reason that the use of centralised management techniques remains the preferred approach
when environments are expected to exhibit a low rate of churn–the most notable examples being
CBR and CBR-like learning methodologies [23–26, 36, 42].

The advantages of self-healing approaches are directly related to their supervisory requirements.
Although supervised learning methodologies have shown advances towards reducing human over-
head, when compared to unsupervised methodologies, they have ultimately produced palliative
results–particularly when executing recovery strategies. This is primarily due to the fact that super-
vised techniques can only reactively detect faults [35] and that the solutions they generate often
must be vetted via human intervention before being implemented. These solutions can become
increasingly more complex to manage as the interdependency of features must be accounted for
in subsequent self-healing strategies [50]. Such solutions are difficult to vet as often relationships
between features are not immediately accessible either algorithmically or intuitively.

Semi-supervised and unsupervised approaches have shown stronger capabilities in ascertaining
the root cause of a given fault and producing non-palliative recovery solutions. In particular, the
use of evolutionary programming techniques has demonstrated the unique ability to autonomously
generate new systems configurations at run-time to mitigate faults [37], and the use of artificial
neural networks has been shown to correlate specific systems configurations with operational fit-
ness levels to produce predictive fault detection [35]. These approaches show greater capabilities
for autonomously self-healing of faults, but, like supervised methodologies, also come with cer-
tain restrictions. Notably, the resources needed by unsupervised approaches can be much greater
than supervised approaches, and frameworks leveraging these methods are not assured of finding a
solution [35, 37]. These are properties inherent to the nature of search-space methodologies–either
a pre-defined constraint is exhausted (e.g. time) or an acceptable solution is converged upon [51].
Exploration into these issues remains a separate field of study and outwith the scope of this survey;
however, it is clear they are deeply related to the viability of self-healing solutions.

The future of self-healing systems research is multi-faceted and remains open to further explo-
ration. Recent advances in self-healing systems have seen a wider range of issues being addressed
and in more complex environments. However, as environments continue to develop and the relation-
ships between self-healing solutions continue to co-evolve with their implementation requirements,
still greater questions are being asked.

Self-healing systems frameworks are continuing to explore new methodologies for
detecting and mitigating faults. However, which approach is most efficient–and under what
circumstances–is an area of research that needs further exploration. At present, very little infor-
mation is available on this topic, and there are no publicly verifiable results [10, 69]. This may be
in part due to the diverse set of situations in which self-healing systems have been implemented–
making direct comparisons difficult–or due to restrictions on releasing this information publicly. A
comparison of self-healing systems frameworks using non-simulated data would be greatly
beneficial to the field.

The nomenclature used to describe certain aspects of self-healing systems research is becom-
ing increasingly vague. At present, most recovery strategies utilise subsets of other self-*, self-
adaptation, or self-management properties. These properties often include aspects in optimisation
and configuration–sometimes concurrently. This has led to a diverse understanding of what criteria
are acceptable for evaluating the success of a self-healing framework [19,58,69,70]. This multiplic-
ity of terms can be confusing–particularly between systems that autonomously provision themselves
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within an environment versus those that can elect new subsets of features or configurations to correct
faults. Although some research has been produced in this area, it could do with a more explicit set
of definitions.

Self-healing methodologies are continuing to specialise, based on their computing environ-
ment(s), and showing strides towards greater autonomy. However, these approaches can be more
resource intensive and less predictable when leveraging unsupervised learning methodologies. In
order to adopt unsupervised learning methodologies into production computing environments, these
issues will need to be addressed. It may be possible to reduce resource requirements– and narrow
the expected set of behaviours of existing approaches–by guiding the evolutionary programming
techniques that are currently being leveraged. The advent of the SOM has shown that vector analy-
sis can help pinpoint the location of faults by examining feature data from an historical perspective.
If this information were to be leveraged via a genetic algorithm, it could substantially reduce the
search space needed for generating a new working systems configuration.

Lastly, there are still further methods to explore in building self-healing frameworks. The use
a hidden Markov-model may be able to provide similar results to that of the SOM, but with
potentially less required training time. To date, there are no known self-healing frameworks that
utilise this particular methodology. The latter two areas of research are topics of research we intend
to explore.

4. CONCLUSION

The IBM originally predicted that building an autonomic system would be an evolutionary process.
As self-healing frameworks exhibit greater autonomy, this prediction is being realised in a more
literal than figurative manner. The use of machine learning and evolutionary programming tech-
niques have shown how systems can predictively mitigate faults, without human interaction, and
can complement the use of policies and other human-driven approaches. Ideas from biological and
physical systems offer further inspiration and another axis in which to evaluate the construction of
decentralised adaptive systems. The ability to correlate stochastic, search-based techniques with per-
formance metrics and configuration data shows a promising venue for autonomously contextualising
systems behaviours.

However, much work remains to be carried out in building predictive methodologies if the origi-
nal self-healing tenet is to be fully realised. Understanding the relative effectiveness of self-healing
frameworks with respect to their preferred methodologies and realising self-adaptive systems that
can autonomously detect and recover from faults without human intervention remain core chal-
lenges. Yet, there are few if any resources that discuss direct comparisons between the effectiveness
of self-healing systems frameworks. One of the largest problems appears to be access to live infor-
mation and resources that can accommodate realistic testing of such services. A single study in this
area would likely prove to be immensely beneficial to the field.

Furthermore, as self-healing approaches continue to advance, the division between self-
configuration, protection, and optimisation is blurred. As discussed in Section 1.1.3, the definitions
of self-configuration, protection, and optimisation share properties and technological boundaries
with self-healing. As such, self-healing strategies often leverage techniques that fall into these pre-
viously separately defined boundaries. Stronger definitions or revisiting the terminology used in the
field may produce beneficial results in the form of more direct contributions– particularly to studies
in autonomous provisioning and security. The systematic integration of these properties, in a way
that allows them to be evaluated and traded-off to maximise a system’s pursuit of its self-healing
mission, remains a core challenge, as much now as it did a decade ago.
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