
A Dataflow Language for Decentralised Orchestration of Web Service Workflows

Ward Jaradat, Alan Dearle, and Adam Barker
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, United Kingdom

{ward.jaradat, alan.dearle, adam.barker}@st-andrews.ac.uk

Abstract—Orchestrating centralised service-oriented work-
flows presents significant scalability challenges that include:
the consumption of network bandwidth, degradation of per-
formance, and single points of failure. This paper presents
a high-level dataflow specification language that attempts to
address these scalability challenges. This language provides
simple abstractions for orchestrating large-scale web service
workflows, and separates between the workflow logic and its
execution. It is based on a data-driven model that permits
parallelism to improve the workflow performance. We provide
a decentralised architecture that allows the computation logic
to be moved “closer” to services involved in the workflow. This
is achieved through partitioning the workflow specification into
smaller fragments that may be sent to remote orchestration
services for execution. The orchestration services rely on
proxies that exploit connectivity to services in the workflow.
These proxies perform service invocations and compositions
on behalf of the orchestration services, and carry out data
collection, retrieval, and mediation tasks. The evaluation of our
architecture implementation concludes that our decentralised
approach reduces the execution time of workflows, and scales
accordingly with the increasing size of data sets.

Keywords-Web Service Workflows, Dataflow Specification
Language, Decentralised Orchestration Architecture

I. INTRODUCTION

Centralised orchestration is typically used to execute
large-scale service-oriented workflows. This centralised
approach provides control over the workflow, supports
process automation, and permits the workflow logic to be
encapsulated, modified, or extended as necessary at a central
location. However, it presents a set of research challenges,
these include: the consumption of network bandwidth,
degradation of performance, and single points of failure [1].
These challenges are particularly prominent when dealing
with highly distributed data-intensive workflows such as
scientific workflows used in the area of astronomy [2].
These workflows are commonly composed as Directed
Acyclic Graphs (DAG), and involve large quantities
of intermediate data that need to be routed through a
centralised engine. The specification of these workflows is
complex as they consist of asynchronous, distributed and
concurrent processes.

This paper aims to address these challenges by providing
a simple high-level dataflow language that reduces the
complexity of specifying service-oriented workflows. In
our approach, we provide a decentralised orchestration

architecture with which workflows specified using our
language can be partitioned into smaller fragments that
may be sent to distributed orchestration services. These
orchestration services collaborate together to execute the
workflow with each orchestration service executing part
of the workflow specification. Our research hypothesis
states that this approach reduces the overall communication
between services, and avoids potential performance
bottlenecks due to the distribution of data and the absence
of a centralised orchestration engine.

The remainder of this paper is structured as follows:
Section 2 presents an overview of our dataflow language.
Section 3 presents the language design. Section 4 provides
a set of examples that describe the language support for
common dataflow patterns. Section 5 explains the data type
system of the language. Section 6 presents our distributed ar-
chitecture that is used to execute the language, and provides
an evaluation of our architecture implementation. Section 7
discusses related work in the area of our research. Finally,
Section 8 concludes the paper and states future work.

II. LANGUAGE OVERVIEW

Our language provides abstractions that define a set
of services and coordinate the dataflow between them. It
separates the workflow logic from its execution, which
permits the workflow architect to focus on specifying the
workflow without knowledge of how it is executed. Unlike
typical dataflow languages that separate computation and
coordination, we believe that creating a dataflow language
that combines both has much merit and deserves further
investigation. This language is characterised as a simple
dataflow language that supports parallelism, and provides
a data-driven execution model.

A. Language Characteristics

1) Simplicity: The language permits the workflow to be
expressed in simple high-level abstractions that describe
only the information required to perform service invocations,
compose services together, and coordinate the dataflow
between them. Consequently, the workflow architect does
not have to deal with low-level details related to the exe-
cution mechanism of the language such as process creation,
placement and management of computation, communication,
and synchronisation.

2) Parallelism: The language provides implicit
parallelism support to improve the execution performance
of workflows. It permits the workflow specification to be
represented as a Directed Acyclic Graph (DAG) that can
be nested and may be decomposed into smaller graphs
for concurrent execution. This provides ease of workflow
partitioning and reduces the complexity of the language as
it avoids the introduction of loops and control structures. In
our approach, parallelism is automatically recognised by the
language compiler. Furthermore, the result of any specified
workflow will be the same at all times regardless of the
execution of intricate parts of the workflow in parallel.
Consequently, we can easily run and debug a workflow
specified using our language on a single sequential machine
and then compile it for execution on parallel machines.

3) Data-driven execution model: The language adopts
a data-driven execution model that depends on the avail-
ability of data. For instance, a service invocation can only
be executed when the input data that is required for its
execution becomes available. This permits the data required
for executing specific parts of the workflow to be obtained
from multiple services.

B. Simple Example

In this section, we provide an example of a simple
workflow that involves a number of services and combines
common dataflow patterns used in complex scientific work-
flows. These patterns include the pipeline, data distribution
and data aggregation patterns [2]. Figure 1 illustrates the
structure of this workflow. In this example, a represents the
initial input data while the services are represented by S1,
S2, S3, S4, S5, and S6. Some of these services produce
intermediate output data that are used in the workflow such
as x and y. The final workflow result is represented by z.

a S1 S2

S5

S4

S3

x S6 zy

Data Service

Figure 1. Simple Workflow Example

Listing 1 shows the specification of this workflow using
our language. This specification will be used throughout
the paper to explain the language constructs, its support
for common dataflow patterns, and data type system. Lines
1-13 define the services in the workflow and the service
endpoints. Lines 15-18 provide the workflow interface
that indicates the inputs and outputs of the workflow.
Lines 20-31 consist of computation elements that represent
service invocations, and coordination elements that indicate

the direction of the dataflow between services. For instance,
an input a is used to invoke an operation Op1 provided
by a service endpoint p1 in line 20. The invocation result
is passed as input to another endpoint to create a service
composition that produces the result x through lines 21-22.

01 description desc is http://ward.host.cs.
st-andrews.ac.uk/documents/services.wsdl

02 service s1 is desc.Service1
...
07 service s6 is desc.Service6
08 port p1 is s1.Port1
...
13 port p6 is s6.Port6
14
15 input:
16 int a
17 output:
18 any x, y, z
19
20 a -> p1.Op1
21 p1.Op1 -> p2.Op2
22 p2.Op2 -> x
23
24 x -> p3.Op3, p4.Op4, p5.Op5
25 p3.Op3 -> b
26 p4.Op4 -> c
27 p5.Op5 -> d
28
29 y = (b, c, d)
30 y -> p6.Op6
31 p6.Op6 -> z

Listing 1. Simple Workflow Specification

III. LANGUAGE DESIGN

The language grammar that is shown in Listing 2 provides
a set of rules for defining services and constructing the
dataflow between them. In this section we describe our
language components that consist of identifiers, a workflow
interface, and computation and coordination elements.

A. Service Identifiers

The language provides a set of identifiers that can be
used to describe the services involved in a workflow and the
service endpoints. These identifiers can be defined using the
language constructs: description, service, and port.
The description construct is used to define an identifier
for a particular service description document. This identifier
can be used to define the services involved in the workflow,
and permit the language compiler to retrieve information
about these services such as their endpoints, operations,
and supported data types. The service construct defines
a service identifier to be used in the workflow, while the
port construct defines an identifier for the service endpoint.

Listing 3 provides an example that shows how to
define services and their endpoints in the language. The
description construct is used to define an identifier desc
for a particular service description document. This document

<specification> ::= <services>* <schema>* <interface> <dataflow> (Workflow specification)

<services> ::= <description> <service> <port> (Services)

<description> ::= description <name> is <URL> (Description identifier)
<service> ::= service <name> is <description-name> . <service-name> (Service identifier)
<port> ::= port <name> is <service-name> . <port-name> (Port identifier)

<schema> ::= schema <name> is <URL> (Data type schema)
<interface> ::= <input> <output> (Workflow interface)
<input> ::= input : <variables> (Defining inputs)
<output> ::= output : <variables> (Defining outputs)
<variables> ::= <type> <name> [, <name>] * (Defining variables)

<type> ::= any | int | double | float | decimal (Base data types)
| byte | boolean | string | long | short
| <schema> : <type-name> (Complex data type)

<dataflow> ::= <invocation> (Service invocation without an input)
| <scalar> -> <invocation> (Passing a scalar as input to a service invocation)
| <variable> -> <invocation> (Passing a variable as input to a service invocation)
| <invocation> -> <variable> (Retrieving a service invocation output)
| <assignment> (Assignment)

<invocation> ::= <port-name> . <operation-name> [. <parameter>] (Service invocation)

<assignment> ::= <variable> = <scalar> (Variable assignment)
| <variable> = <variable>
| <variable> = (<variable> | <scalar> [, <variable> | <scalar>] *)

Listing 2. Language Grammar

is based on the Web Service Description Language (WSDL)
and can be located by a URL. The service construct
is used to define an identifier s1 for a particular service
Service1 provided by the service description identifier,
and the port construct is used define an identifier p1 for
Port1 that is provided by the service identifier.

01 description desc is http://ward.host.cs.st-
andrews.ac.uk/documents/services.wsdl

02 service s1 is desc.Service1
03 port p1 is s1.Port1

Listing 3. Service Identifiers

B. Workflow Interface

The workflow interface is used to indicate the initial
inputs that are required to execute the workflow, and the
outputs to be obtained from the workflow execution. It
permits the inputs and outputs of the workflow to be defined
using simple and complex data types. Listing 4 provides
a workflow interface that consists of an input a of integer
type, and outputs x, y and z of an arbitrary data type any.

01 input:
02 int a
03 output:
04 any x, y, z

Listing 4. Workflow Interface

C. Computation and Coordination Elements

The language permits the description of computation
elements that represent service invocations, and the data
passed to them. The output of a particular service invocation
can be associated with an identifier, or passed directly to
another service invocation to create a service composition.
Each service invocation consists of a port identifier and
an associated operation separated by a dot symbol. The
dataflow specification language provides the coordination
symbol -> to indicate the direction of the data passed to
or retrieved from service invocations. The execution of a
particular service invocation can take place when all the
input parameters for that service invocation are satisfied
during execution. This permits a service invocation to
be executed as soon as the data that is required for its
execution becomes available from different sources.

Listing 5 shows a simple service invocation where a is
used as an input to invoke an operation Op1 provided by a
service endpoint p1. The result of this service invocation is
represented by b.

01 a -> p1.Op1
02 p1.Op1 -> b

Listing 5. Simple Service Invocation Example

IV. DATAFLOW PATTERNS SUPPORT

Our dataflow specification language provides support
for common dataflow patterns that include: pipeline, data
distribution and data aggregation patterns. These simple
patterns can be used to create complex dataflows by
combining them together, and are commonly found in
scientific workflows [2].

A. Pipeline Dataflow Pattern

The pipeline pattern is used for chaining several services,
where an output of one service provides the input of another
service. Figure 2 shows this pattern where a is used as an
input for invoking service S1. The service invocation output
is then passed to service S2 that returns the final output
x. Listing 6 shows the specification of this pattern in our
language, based on the workflow example presented earlier
in section 2. In this example, a is used as input to invoke
a service endpoint p1.Op1 in line 20. The output of this
service invocation is then passed to another service as input
in line 21, and the final output is represented by x in line 22.

a S1 S2 x

Figure 2. Pipeline Dataflow Pattern

...
02 service s1 is desc.Service1
03 service s2 is desc.Service2
...
08 port p1 is s1.Port1
09 port p2 is s2.Port2
...
15 input:
16 int a
17 output:
18 any x, y, z
19
20 a -> p1.Op1
21 p1.Op1 -> p2.Op2
22 p2.Op2 -> x

Listing 6. Pipeline Dataflow Pattern Specification

B. Data Distribution Pattern

The data distribution pattern is used for distributing data
to multiple services for processing. Figure 3 illustrates this
pattern where x represents the output of service S2, which
is used as input to invoke the services: S3, S4, and S5.
Listing 7 shows the specification of this pattern where x is
used to invoke p3.Op3, p4.Op4, and p5.Op5 in line 24.
This finite sequence of service invocations represents the
simplest parallel data structure in our language where each
service invocation is executed concurrently. The invocation
results are b, c, and d as shown in lines 25-27.

S2

S5

S4

S3

x

Figure 3. Data Distribution Pattern

...
04 service s3 is desc.Service3
05 service s4 is desc.Service4
06 service s5 is desc.Service5
...
10 port p3 is s3.Port3
11 port p4 is s4.Port4
12 port p5 is s5.Port5
...
15 input:
16 int a
17 output:
18 any x, y, z
...
24 x -> p3.Op3, p4.Op4, p5.Op5
25 p3.Op3 -> b
26 p4.Op4 -> c
27 p5.Op5 -> d

Listing 7. Data Distribution Pattern Specification

C. Data Aggregation Pattern

The data aggregation pattern is used for aggregating
data obtained from multiple services and sending it to a
service that acts as a data sink. In this section we present a
couple of techniques for specifying this dataflow pattern in
our language. The first technique uses a tuple to combine
data for invoking a particular service, whereas the second
technique uses data routing to forward the data obtained
from multiple services to a particular service directly.

1) Data aggregation technique using a tuple: Figure 4
illustrates this pattern where the outputs of S3, S4, and
S5 are combined in a tuple y that is passed to S6, which
produces an output z. Listing 8 shows the specification of
this pattern in which the service invocation results b, c, and
d are combined in a tuple that is used to invoke p6.Op6 in
lines 29-30. The final output is represented by z in line 31.

S5

S4

S3

S6 zy

Figure 4. Data Aggregation Pattern Using a Tuple

...
07 service s6 is desc.Service6
...
13 port p6 is s6.Port6
14
15 input:
16 int a
17 output:
18 any x, y, z
...
29 y = (b, c, d)
30 y -> p6.Op6
31 p6.Op6 -> z

Listing 8. Data Aggregation Pattern Specification Using a Tuple

2) Data aggregation technique using data routing: Figure
5 illustrates passing the outputs of services S3, S4, and S5

directly to service S6. Listing 9 shows the specification
of this pattern where the invocation outputs of p3.Op3,
p4.Op4, and p5.Op5 are passed directly as input parameters
a, b, and c to invoke p6.Op6 that produces z in lines 25-28.

S5

S4

S3

S6 z

Figure 5. Data Aggregation Pattern Using Data Routing

...
07 service s6 is desc.Service6
...
13 port p6 is s6.Port6
14
15 input:
16 int a
17 output:
18 any x, y, z
...
25 p3.Op3 -> p6.Op6.a
26 p4.Op4 -> p6.Op6.b
27 p5.Op5 -> p6.Op6.c
28 p6.Op6 -> z

Listing 9. Data Aggregation Pattern Specification Using Data Routing

V. DATA TYPE SYSTEM

A. Base Data Types and Scalars

In our language, we provided a set of base types that are
expressed in a type system matching those defined in the
XML Schema standard [3]. The base data types supported
by our language include: byte, boolean, string, int,
float, double, decimal, long, and short. In order to
represent arbitrary data types, we provided support for the
union type any. These base data types are used to define the
inputs and outputs types in the workflow interface. The lan-
guage supports scalars of base data types, and scalar values

can be assigned to variables or used as input parameters
for service invocations. It provides single-assignment for
variables, and the variable type may be inferred from the
scalar value being assigned to that variable. If a scalar is used
to invoke a service endpoint, the language analyser performs
data type checking to verify that the service endpoint accepts
an input whose data type matches that of the scalar.

B. Complex Data Types

The language supports complex data types that can
be obtained from external data type schemas based on
XML [3]. Listing 10 provides an example that defines an
external data type schema identifier schm using the schema

construct as shown in line 1. This identifier is used to
define an input x of the data type newType in line 11. We
have shown how to create a complex data type variable
represented by a tuple that can be assigned several values
in Listing 8. Similarly, the input x may provide parameters
that can be assigned with values that permit it to be used
in the workflow.

01 schema schm is http://ward.host.cs.st-andrews.
ac.uk/documents/types.xsd

...
10 input:
11 schm:newType x
12 output:
13 any z
...

Listing 10. External Data Type Schema Definition

VI. IMPLEMENTATION AND EVALUATION

A. Decentralised Orchestration Architecture

We have implemented a compiler in order to execute
workflows based on our language. This compiler is built
from a set of procedures matching the production rules of
the language grammar, and uses a recursive descent parser
and analyser to ensure the correctness of the workflow
specification. It generates data structures that form the
workflow graph in which the nodes may represent service
invocations, with arcs as data dependencies. Typically,
graphs are used to guide the computation process where
the dataflow tokens represent inputs for service invocations.
These invocations may become active and ready for
execution when all the required input parameters become
available. Upon the execution of a service invocation, its
output value is passed to other service invocations that may
depend on it, which themselves may become activated. This
process continues until there are no more active invocations.

In order to improve the workflow performance we have
built a decentralised orchestration architecture, which per-
mits the workflow specification to be partitioned into smaller
fragments for execution at remote locations “closer” to the

services and resources involved in the workflow. Figure 6
shows our architecture that consists of distributed orches-
tration services and proxies, which collaborate together to
execute a particular workflow. The workflow specification
can be analysed and compiled by an orchestration service,
and partitioned into smaller fragments that may be trans-
mitted to remote orchestration services. These orchestration
services rely on proxies to exploit connectivity to services
in the workflow. These proxies perform service invocations
and compositions on behalf of the orchestration services,
and carry out data collection, retrieval, and mediation tasks.

O
rc

h
es

tr
at

io
n

 a
n

d
 P

ro
xy

Se
rv

ic
es

 In
te

ra
ct

io
n

s

O
rc

h
es

tr
at

io
n

 a
n

d
 P

ro
xy

Se
rv

ic
es

 In
te

ra
ct

io
n

s

Proxy Services
Interactions

Orchestration Services
Interactions

Services

Proxy Service

Interface

Mediator

Executor

Remote
Orchestration

Service

Remote
Proxy Service

Orchestration
Service

Interface

Compiler

D
ep

lo
y

Manager

Invocations and Responses

Remote Services

Invocations and Responses

Input Output

Figure 6. Decentralised Orchestration Architecture

B. Description and Configuration of Experiments

We have conducted a number of experiments that aim
to evaluate the performance of our architecture during the
execution of workflows. These experiments involved testing
services that were deployed on Amazon EC2 regions.
Firstly, we specified a workflow based on a pipeline
dataflow pattern in which the output size of data increases
with each service invocation, and each test service produces
an output that is double the size of the input used to invoke
it. Secondly, we specified a workflow based on a data
aggregation pattern in which the final output size is double
the size of the input data that was collected from multiple
test services. Thirdly, we specified a workflow based on

a data distribution pattern where an initial test service
is invoked to produce an output that is sent to multiple
test services, and each test service produces an output of
approximately the same size of the received input. Each of
these workflows was executed 20 times by our architecture
in centralised and decentralised configurations.

Figure 7 illustrates the centralised configuration where a
single orchestration service O manages a proxy P. The test
services T1, T2, T3, and T4 are used in each workflow.

N. Virginia

T1

O

P

Oregon

T2

N. California

T3 T4

Figure 7. Centralised Configuration

Figure 8 illustrates the decentralised configuration where
multiple orchestration services O1, O2 and O3 manage the
proxies P1, P2, and P3 respectively.

N. Virginia

T1

O1

P1

Oregon

T2

O2

P2

N. California

T3 T4

O3

P3

Figure 8. Decentralised Configuration

C. Performance Analysis

Table 1 provides the mean speedup rate for each ex-
periment. It was calculated by dividing the mean time
for executing the workflow using a single orchestration
service, over the mean time for executing it using multiple
orchestration services. The performance analysis verifies our
research hypothesis, which states that decentralised orches-
tration reduces the overall execution time of the workflow
compared with centralised orchestration. In order to explain
our results, when using a centralised orchestration service,

æ

æ

æ

æ

æ

à

à
à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
Hm

sL
Pipeline Dataflow Pattern

æ

æ

æ

æ

æ

à

à

à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
Hm

sL

Data Aggregation Pattern

æ

æ

æ

æ

æ

à

à

à

à

à

æ Centralisation

à Decentralisation

10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Total Data Size HMbL

E
x
ec

u
ti

o
n

T
im

e
Hm

sL

Data Distribution Pattern

Figure 9. Experimental Results

large intermediate copies of data pass through the orches-
tration service before they are sent across the network to
other services in the workflow. This increases the workflow
execution time and may overload the orchestration service.
In our architecture, the intermediate data are stored by the
proxies and used only when required during the workflow.
This reduces the amount of data that is communicated
between services and improves the workflow execution time.

Table I
MEAN SPEEDUP RATES

Experiment Mean Speedup Rate
Pipeline 1.37
Data Aggregation 1.30
Data Distribution 1.41

Figure 9 displays a set of graphs that provide the total size
of data communicated in the workflow, and the workflow
execution time for each experiment.

VII. RELATED WORK

The Business Process Execution Language (BPEL) [4] is
an orchestration language that provides a component model
for describing services as collaborating processes, which
interact with each other based on a business protocol.
However, the language limitation becomes apparent in
large-scale workflows that require considerable effort to
specify parallel activities and the dependencies between
them. It has seen limited applications in scientific workflows.

The Abstract Grid Workflow Language (AGWL) [5] is
a language based on XML that describes Grid workflow
applications. It uses activities and provides constructs to
define the control flow in these activities, and the dataflow
between different activities. This permits explicit parallelism
that increases the language sophistication. Our language
provides implicit parallelism and avoids using control flow
constructs to reduce the language complexity.

The Grid Services Flow Language (GSFL) [6] features
an activity model that describes the workflow activities, and
a composition model that describes the service interactions.
However, the configuration of services may need to be
altered before execution. In our approach, the workflow
architect does not need to modify the service configurations.

Taverna is a workflow management system that uses the
Simple Conceptual Unified Flow Language (SCUFL) [7]
to define service interactions with control and data links.
However, the language execution is based on a centralised
model that suffers from performance bottlenecks. In our
approach, highly distributed data-intensive workflows can be
executed using our architecture in a decentralised fashion.

Swift [8] is a workflow scripting language that uses
futures to enable parallel behaviour, and has a limited set of
data types, operators, and built-in functions. It uses a data-
driven model that is similar to our language model where a
particular function can be executed when the required inputs
for that function become available. However, Swift focuses
on coordinating the execution of legacy applications coded
in various programming languages rather than orchestrating
the dataflow between web services involved in a workflow.

Dryad [9] is a distributed execution infrastructure for
data-parallel programs. It combines computational vertices
with communication channels to form a dataflow graph.
However, these graphs are explicitly developed by the
programmer. In our approach, these graphs are implicitly
generated by the language compiler.

DAGMan (Directed Acyclic Graph Manager) [10] is a
meta-scheduler for Condor. It is used for scheduling jobs
within a graph in which the vertices are programs, and the
arcs are program dependencies. However, it is not catered
for orchestrating service-oriented workflows.

The Flow-based Infrastructure for Composing Au-
tonomous Services (FICAS) [11] is a service composition
infrastructure for executing distributed dataflows. It uses the
Compositional Language for Autonomous Services (CLAS)
to describe the behaviour of services. It can be compiled
into a control sequence to be executed by the runtime
environment. However, this approach is intrusive as the
services must altered and wrapped with a special interface.

VIII. CONCLUSION AND FUTURE WORK

This paper has presented our dataflow language that
provides high-level abstractions for defining large-scale web
service workflows. It reduces the complexity of specifying
workflows and permits efficient use of parallelism. The
language provides constructs for defining service identifiers,
a workflow interface, and computation and coordination
elements that permit the specification of common dataflow
patterns. We have built a distributed architecture to
execute workflow specifications based on our language.
This architecture consists of orchestration services that
can analyse a particular workflow specification, and may
partition it to smaller fragments for execution at remote
locations. These orchestration services rely on proxies to
exploit connectivity to services involved in the workflow
by invoking services and composing them together. The
evaluation of our architecture concludes that our approach
provides a scalable solution for reducing the amount of
data transfer, and improving the workflow execution time.

Future work will include investigating several workflow
partitioning and execution optimisation techniques, and pro-

viding execution policies to accommodate performance op-
timisation and resource utilisation requirements. In order to
address security requirements, we will provide information
policies to regulate the dissemination of confidential data in
workflows. Clearly, there are other potential areas to con-
sider such as the placement of computation, load balancing,
and handling failures. Further information about our work
is available at http://bigdata.cs.st-andrews.ac.uk/.

REFERENCES

[1] Adam Barker, Jon B. Weissman, and Jano van Hemert. 2008.
Eliminating the middleman: peer-to-peer dataflow. In Proceed-
ings of the 17th international symposium on High performance
distributed computing (HPDC ’08). ACM, New York, NY,
USA, 55-64.

[2] Bharathi, Shishir, Ann Chervenak, Ewa Deelman, Gaurang
Mehta, Mei-Hui Su, and Karan Vahi. ”Characterization of
scientific workflows.” In Workflows in Support of Large-Scale
Science, 2008. WORKS 2008. Third Workshop on, pp. 1-10.
IEEE, 2008.

[3] Biron, Paul, Ashok Malhotra, and World Wide Web Consor-
tium. ”XML schema part 2: Datatypes.” World Wide Web
Consortium Recommendation REC-xmlschema-2-20041028
(2004).

[4] Andrews, Tony, Francisco Curbera, Hitesh Dholakia, Yaron
Goland, Johannes Klein, Frank Leymann, Kevin Liu et al.
”Business process execution language for web services.”
(2003).

[5] Fahringer, Thomas, Sabri Pllana, and Alex Villazon. ”A-GWL:
Abstract grid workflow language.” In Computational Science-
ICCS 2004, pp. 42-49. Springer Berlin Heidelberg, 2004.

[6] Krishnan, Sriram, Patrick Wagstrom, and Gregor Von
Laszewski. ”GSFL: A workflow framework for grid services.”
Preprint ANL/MCS-P980-0802, Argonne National Laboratory
9700 (2002).

[7] Oinn, Tom, Matthew Addis, Justin Ferris, Darren Marvin,
Martin Senger, Mark Greenwood, Tim Carver et al. ”Taverna:
a tool for the composition and enactment of bioinformatics
workflows.” Bioinformatics 20, no. 17 (2004): 3045-3054.

[8] Wilde, Michael, Mihael Hategan, Justin M. Wozniak, Ben
Clifford, Daniel S. Katz, and Ian Foster. ”Swift: A language
for distributed parallel scripting.” Parallel Computing 37, no.
9 (2011): 633-652.

[9] Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. ”Dryad: distributed data-parallel programs
from sequential building blocks.” ACM SIGOPS Operating
Systems Review 41, no. 3 (2007): 59-72.

[10] Thain, Douglas, Todd Tannenbaum, and Miron Livny. ”Dis-
tributed computing in practice: The Condor experience.” Con-
currency and Computation: Practice and Experience 17, no. 24
(2005): 323-356.

[11] Liu, David, Kincho H. Law, and Gio Wiederhold. ”Data-flow
distribution in FICAS service composition infrastructure.” In
Proceedings of the 15th International Conference on Parallel
and Distributed Computing Systems. 2002.

	Introduction
	Language Overview
	Language Characteristics
	Simplicity
	Parallelism
	Data-driven execution model

	Simple Example

	Language Design
	Service Identifiers
	Workflow Interface
	Computation and Coordination Elements

	Dataflow Patterns Support
	Pipeline Dataflow Pattern
	Data Distribution Pattern
	Data Aggregation Pattern
	Data aggregation technique using a tuple
	Data aggregation technique using data routing

	Data Type System
	Base Data Types and Scalars
	Complex Data Types

	Implementation and Evaluation
	Decentralised Orchestration Architecture
	Description and Configuration of Experiments
	Performance Analysis

	Related Work
	Conclusion and Future Work
	References

