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ABSTRACT
As the number of services and the size of data involved in
workflows increases, centralised orchestration techniques are
reaching the limits of scalability. In the classic orchestration
model, all data pass through a centralised engine, which
results in unnecessary data transfer, wasted bandwidth
and the engine to become a bottleneck to the execution
of a workflow. Choreography techniques, although more
complex to model offer a decentralised alternative and are
the optimal architecture for data-centric workflows; data
are passed directly to where they are required, at the next
service in the workflow.

While orchestration is the dominant architectural ap-
proach, there are relatively few choreography languages
and even fewer concrete implementations. This papers
contributions are twofold. Firstly we argue the case for
choreography in data-intensive computing, and demonstrate
through workflow patterns the advantages in terms of
scalability when a choreography architecture is adopted.
Secondly we introduce the Light Weight Coordination Cal-
culus (LCC), a type of process calculus used to formally
define choreographies, and the OpenKnowledge framework,
a choreography-based architecture, providing the function-
ality for peers to coordinate in an open peer-to-peer system.
Through LCC and the OpenKnowledge framework we prac-
tically demonstrate how choreography can be achieved in
a lightweight manner with a comparatively simple process
language.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.2.11 [Software Engineering]: Software Ar-
chitectures; H.4.1 [Information Systems Applications]:
Workflow Management

General Terms
Algorithms, Design.
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1. INTRODUCTION
Service-oriented architecture (SOA) is an architectural

approach for the implementation and delivery of loosely
coupled distributed services [26]. Although the concept of a
service-oriented architecture is not a new one, this approach
has seen wide spread adoption through the Web services
approach, which has a set of basic, core standards (XML,
WSDL, SOAP etc.) to facilitate service interoperability.

The core standards do not provide the rich behavioural
detail which describes the role an individual service plays
as part of a larger, more complex collaboration. This
collaboration is often achieved through the use of workflow
technologies. As defined by the Workflow Management
Coalition [13], a workflow is the automation of a business
process, in whole or part, during which documents, infor-
mation or tasks are passed from one participant (a resource;
human or machine) to another for action, according to a set
of procedural rules. Workflow can be described from the
view of a single participant using orchestration or from a
global perspective using choreography.

Web service orchestration enables Web services to be
composed together in predefined patterns, described using
an orchestration language and executed on an orchestration
engine. Services themselves have no knowledge of their
involvement in a higher level application and therefore need
no alteration before enactment. Importantly, Web service
orchestrations are described from the view of a single par-
ticipant (which can be another Web service) and therefore a
central process always acts as a controller to the involved
services. Orchestration languages explicitly describe the
interactions between Web services by identifying messages,
branching logic and invocation sequences. The Business
Process Execution Language (BPEL) [29] is an executable
business process modelling language and is recognised as the
current de-facto standard way of orchestrating Web services.
BPEL has broad industrial support from companies such as
IBM, Microsoft and Oracle, with concrete implementations.

Service choreography on the other hand is more collab-
orative in nature. A service choreography is a description
of the externally observable peer-to-peer interactions that
exist between services, therefore choreography does not rely
on a central coordinator. A choreography model describes
multi-party collaboration and focuses on message exchange;
each Web service involved in a choreography knows exactly
when to execute its operations and with whom to interact.
A choreography definition can be used at design-time to
ensure interoperability between a set of peer services from a



global perspective, meaning that all participating services are
treated equally, in a peer-to-peer fashion. The Web Services
Choreography Description Language (WS-CDL) [17] is an
XML-based language that can be used to describe the
common and collaborative observable behaviour of multiple
services that need to interact in order to achieve a shared
goal. WS-CDL is a W3C Candidate Recommendation. For
a summary of the current orchestration and choreography
languages refer to [1].

1.1 Paper Contributions and Overview
There is a shortfall in choreography research; the current

primary focus by industry and to some degree academia is
on orchestration techniques. To roughly quantify, according
to Google Scholar: From 1990 until 2008 there were 13,000
orchestration related publications and 4,700 choreography
related publications. There is a varied selection of orchestra-
tion languages and enactment frameworks, examples can be
seen in the Business Process Modelling community through
BPEL and life sciences community through Taverna [22].

This paper highlights the case for choreography in data-
intensive computing, focusing in particular on the bottle-
necks caused by centralised orchestration engines. Argu-
ments for choreography are presented in Section 2. In
Section 2.1 a number of simple workflow patterns focusing
on data flow are introduced. These workflow patterns are
used as the basis for discussion throughout the remainder
of this paper. For each of the patterns (fan-in, fan-out
and sequence) orchestrated and choreographed solutions are
presented. We compare the approaches and demonstrate the
savings in terms of data flow when individual patterns are
choreographed.

Section 3.1 introduces the OpenKnowledge framework,
a choreography-based architecture centred around peers in
an open peer-to-peer system. The framework enables the
publishing and enactment of interaction models, a formal
specification of a choreography. Section 3.2 presents an
overview of the Light Weight Coordination Calculus (LCC),
a type of process calculus used to formally define interaction
models. In order to demonstrate the OpenKnowledge
framework and LCC, the fan-in pattern is implemented in
Section 4. There exists a limited set of pure choreography
languages, however Section 5 discusses each in turn, along
with approaches for optimising Web service orchestration.
Finally, conclusions are presented in Section 6.

2. THE CASE FOR CHOREOGRAPHY
Choreography, although an established concept, is a

less well researched and implemented architecture than
orchestration. In practice, the design processes and exe-
cution infrastructure for service choreography models are
inherently more complex than orchestration; decentralised
control brings a new set of challenges which are the result
of message passing between distributed asynchronous, con-
current processes. However, although more complex, there
are a number of arguments for adopting choreography.

From a software design perspective, orchestration is suit-
able when the goal is to build individual services or to
service-enable existing applications. However during the
early phases of service design the emphasis lies not on
building individual services but rather on how groups of
services work together, by identifying collections of potential
services and understanding and analysing their interactions;

at this early stage in the design process engineers require a
global view of how Web services interact with one another;
choreography provides just these tools and is a description
of multi-party collaboration.

Choreography is an unambiguous way of describing the
relationships between services in a global peer-to-peer col-
laboration, without requiring orchestration at all. Each
party takes an equal, predefined and pre-agreed role in the
choreography, this removes the scenario where businesses
are interacting over a shared task but one organisation has
control over another by orchestrating their services.

Centralised control through an orchestration engine is a
valid solution for scenarios found in e-Commerce, where
relatively small quantities of intermediate data (when output
from one service invocation is directly, with no alteration,
used as input to another) are moved between services
in a workflow. However, centralised servers make less
sense when dealing with data centric workflows (GBs/TBs),
common to scientific applications. Passing large quantities
of intermediate data through a centralised orchestration
engine results in unnecessary data transfer and wasted
bandwidth, overloading the engine and thereby decreasing
the performance of a workflow.

2.1 Expanding the Scalability Argument
As with software design patterns, workflow patterns

refer to recurrent problems and proven solutions in the
development of workflow applications. There is a large body
of workflow patterns research detailing a comprehensive
set of patterns from both a control flow and data flow
perspective, the most prevalent being the work by van der
Aalst and Hofstede et al. [31]. and the Service Interaction
Patterns set by Barros et al. [5], a collection of thirteen
recurring patterns derived from insights into business-to-
business transaction processing.
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Figure 1: Pattern extraction: Montage use-case
scenario.

Of particular interest to this paper are patterns which
affect data flow and not control flow. Figure 1 illustrates the
Montage workflow, a benchmark in the High Performance
Computing community and representative of a class of
large-scale, data-intensive workflows. Montage constructs
custom “science-grade” astronomical image mosaics from a
set of input image samples [14]. Montage illustrates several
features of data-intensive scientific workflows. Montage can
result in huge data flow requirements. The intermediate



data can be 3 times the size of the input data, e.g. an all-
sky mosaic can result in 2-8 TB of data movement. Such
a problem might be run daily. Montage is essentially a
Directed Acyclic Graph (DAG).

With reference to Figure 1 we can identify a number of
simple patterns:

• Fan-in: Involves mapping multiple sources to a single
sink (N:1 relationship), e.g. mFitPlane → mConcat-
Fit.

• Fan-out : The reverse pattern of fan-in, data from a sin-
gle source is sent to multiple sinks (1:N relationship),
e.g. mBgModel → Background.

• Sequence: This pattern involves the chaining of services
together, where the output of one service invocation
is used directly as input to another, i.e. serially (1:1
relationship). The data flows as a pipeline with no
data transformations, e.g. mConcat → mBgModel.

In order to highlight the scalability and optimised data
flow argument for each pattern we highlight in terms of
data flow the orchestration scenario, left hand column of
Figure 2 and the choreography scenario, right hand column
of Figure 2. Diagrams are drawn in UML Collaboration
format. Data sizes are shown in Megabytes (Mb) and
are used for illustrative purposes only. The following two
equations are used to calculate the data flow on a per pattern
relationship, i.e. fan-in (N:1), fan-out (1:N) and sequence
(1:1).

Equation 1 is used to calculate the total data flow for
a given pattern using orchestration. Equation 2 is used
to calculate the total data flow using choreography. n

represents the number of sources and i represents the index
of a source service for 1 ≤ i ≤ n. ini represents the input
size in Mb to a source service i. outi represents the
output size in Mb to a source service i. m represents the
number of sinks and k represents the index of a sink service
for 1 ≤ k ≤ m. outk represents the output size in Mb to a
sink service k. We do not propose that these equations are
general purpose, they have been included to highlight the
difference in data flow for our particular configuration of
patterns.
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2.1.1 Fan-in pattern
Three services source1− source3 are queried for data,

these data are concatenated and sent to a final service
processor for analysis, which returns 10% of the input data
size as output. In our example, n = 3 and m = 1. Using
Equation 1, to orchestrate the fan-in pattern (Figure 3(a))
involves a total data flow of 630Mb. Using equation 2, to
choreograph (Figure 3(b)) a total of 330Mb.

2.1.2 Fan-out pattern
A service source is queried for data, which are sent asyn-

chronously in parallel to three services processor1− processor3,
for analysis. Each service then returns 10% of the input
it was provided. In our example, n = 1 and m = 3. Using
Equation 1, to orchestrate (Figure 3(c)) the fan-out pattern
involves 430Mb of data flow. Using Equation 2, to chore-
ograph (Figure 3(d)) the pattern involves 330Mb of data
flow.

2.1.3 Sequence pattern
A query is made to a data source, whose output is chained

serially through three analysis services processor1− processor3,
each service returns half of the input it receives.

As the sequence pattern defines a 1:1 relationship, we must
use Equation 1 for every output → input chain to calculate
the data flow for the entire workflow: i.e. source →
processor1 and processor2→ processor3 for Figure 3(e).
Therefore n = 1 and m = 1 for two calculations and the total
data flow to orchestrate the pattern is 362.5Mb. Using
Equation 2 to choreograph (Figure 3(f)) involves 187.5Mb of
data flow. Note, for the sequence choreography calculation,
only the initial data flow to the first service in the chain is
used to calculate the total data flow. Therefore the input
and output to source and the output from processor1 make
up the first chain and the output from processor2 and
processor3 make up the second chain.

2.2 Discussion
Difference between orchestration and choreography dataflows
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Figure 2: Difference in the data flow between
orchestration and choreography increasing the
number of sinks and sources.

For each of the patterns we have demonstrated how
the choreographed solution is optimal in terms of data
flow. Choreography removes the notion of intermediate
data. As an example, consider the fan-in pattern. Using
standard orchestration the query results (D1, D2, D3) from
source1− source3 pass through the centralised orchestra-
tion engine and are then used as input to the processor



(a) Orchestrated Fan-in pattern (b) Choreographed Fan-in pattern

(c) Orchestrated Fan-out pattern (d) Choreographed Fan-out pattern

(e) Orchestrated Sequence pattern (f) Choreographed Sequence pattern

Figure 3: Workflow patterns: Fan-in, Fan-out, Sequence. Orchestration (left column) and Choreography
(right column). We assume the orchestration engine is running on a user’s desktop and is therefore equivalent
to the user party in the choreography scenario. No data transformations take place and any control flow is
ignored. Data size shown in Megabytes (Mb).



service, which analyses these data and returns the results
(PD) back to the engine. Using choreography, the results of
the queries (D1, D2, D3) from source1− source3 are sent di-
rectly to where they are required, as input to the processor

service. Once analysis is complete the results (PD) are sent
back to the user, whom is remote from the distributed
services. As the results from the queries (D1, D2, D3) do
not have to pass through a centralised orchestration engine,
the choreography approach removes three additional hops
involving intermediate data. This optimises data flow by a
total of 300Mb.

For every output→ input chain, that is every output that
is used directly as input to another service, orchestration
adds an extra hop to the data flow as it passes through the
orchestration engine. Totaling n extra hops for each pattern.
This is reflected in Equation 1 through (m + 1)× outi
against m× outi in Equation 2. The benefits of adopting a
choreography model increase as the number of services and
data sizes used in the workflow pattern increase. However,
as Figure 2 shows, the greatest benefit is obtained as
the number of sources n increases: for twenty sources
and one sink, with the same input and output sizes used
in the example, the difference between orchestration and
choreography data flow is nearly 50% (2200Mb against
4200Mb); increasing the number of sinks does not change
the difference, as it is proportional to the number of sources
only.

3. ADDRESSING THE BOTTLENECK
In the context of our scalability discussion, this Section

introduces a choreography-oriented language, the Light
Weight Coordination Calculus (LCC) and its corresponding
enactment framework, OpenKnowledge.

3.1 The Open Knowledge Framework
The OpenKnowledge kernel [27] provides the layer that

assorted services and applications can use to interact using
a choreography-based architecture. The core concept is the
use of shared interaction models by different applications
and service providers. These actors are the participants of
the interactions, and they assume roles within them. In an
interaction all roles have equal weight; in that respect they
are peers in a peer-to-peer network and their behaviours and
in particular their exchanges of messages are specified.

Interaction models are published by the authors on the
Distributed Discovery Service (DDS), with a keyword-based
description [18]. A peer that wants to perform some task,
such as querying a database, providing access to data or data
processing capabilities, searches for published interaction
models (IMs) by sending a keyword-based query to the DDS.
The DDS collects the published interaction models matching
the description (the keywords are extended adding synonyms
to improve recall) and sends back the list.

The peer then evaluates the requirements of the interac-
tion model with its own capabilities. If they match, the
peer will send back to the DDS the subscription to one of
the interaction model’s roles, advertising its intention to
participate in one or more executions of the interaction.
Peer’s capabilities are provided by plug-in components,
called OKCs (Open Knowledge Component). An OKC is
a jar file, and its classes expose methods that implement
some functionality. How the functionality is implemented is
transparent: it can be an invocation to a web service, a call

to a legacy application or it can be self contained and use
only what is contained in the jar. OKCs can be published
on the DDS and downloaded by any peer.

Figure 4 illustrates a snapshot of a deployed OpenKnowl-
edge framework. Interaction Models IM1, IM2 and IM3 are
published on the DDS. In IM1, role r1 is subscribed by peer
P1, role r2 is subscribed by P2 and role r2 is subscribed by
P3 and P4.
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Figure 4: OpenKnowledge architecture

Once all roles are filled, the DDS randomly selects a peer
in the network to act as coordinator for the interaction,
and passes the interaction model together with the list of
involved peers in order to bootstrap it. The coordinator
first asks each peer to select the peers they want to interact
with, forming a mutually compatible group of peers out of
the replies. Once complete, enactment of the interaction
model can begin.

The kernel has been developed in Java and it is less than
15Mb. It can be downloaded from the OpenKnowledge
website: [30], where it is also possible to find more exhaustive
information.



3.2 Lightweight Coordination Calculus
Interaction models are written in the Lightweight Coor-

dination Calculus (LCC) [25], an executable choreography
language based on process calculus.

Model := {Clause, . . .}
Clause := Role :: Def

Role := a (Type, Id)
Def := Role |Message | Def thenDef | Def or Def

Message := M ⇒ Role |M ⇒ Role← C
|M ⇐ Role | C ←M ⇐ Role

C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C
Type := Term

Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character, sequence or number
V ariable := upper case character, sequence or number

Figure 5: LCC formal syntax

With reference to Figure 5, an interaction model in LCC
is a set of clauses, each of which define how a role in an
interaction must be performed. Roles are described by their
type and by an identifier for the individual peer undertaking
that role. Participants in an interaction take their initial
entry-role and follow the unfolding of the clause specified
using a combination of the sequence operator (‘then’) or
choice operator (‘or’) to connect messages and changes of
role. Messages are either outgoing to (‘⇒’) or incoming
from (‘⇐’) another participant in a given role. Messages can
have constraints: success or failure in satisfying them drives
the unfolding of the interactions. In OpenKnowledge the
constraints are matched to methods in the OKCs, the plug-
in components introduced in the previous Section. During
an interaction, a participant can take, sequentially, different
roles and can recursively take the same role, for example
when recursively processing a list. Message input/output
or change of role is controlled by constraints defined using
conjunction and disjunction.

a(r1,A) ::0@ msg1(Data)⇒ a(r2, B)← obtain(Data)
then

msg2 ⇐ a(r2, B)

1A
or msg3 ⇒ a(r3, C)

a(r3(E),C) ::
msg3 ⇐ a(r1, A)
then

a(r3(En), C)← En = E + 1

Figure 6: LCC example 1 (top) and LCC example 2
(bottom)

The LCC example in the top section of Figure 6 defines
the behaviour of a peer subscribing to a role r1. The peer,
uniquely identified by variable A, first tries to satisfy the
constraint obtain(Data): if it succeeds, the variable Data is
instantiated and sent within a message msg1 to peer B in role
r2. It then waits for message msg2 from the same peer. If
it fails to satisfy obtain(Data), the message msg3 is sent to
peer C in role r3.

The LCC example in the bottom section of Figure 6
defines the behaviour of a peer, identified in variable C, that
takes role r3: it waits for a message msg3 from a peer in role
r1, and then recursively increments a counter.

In its definition, LCC makes no commitment to the
method used to solve constraints - so different participants
might operate different constraint solvers (including human
intervention).

4. LCC EXAMPLE - FAN-IN
In order to demonstrate the feasibility of our service

choreographic approach, we have implemented the fan-in
pattern described in Section 2.1.1 using OpenKnowledge.
The fan-in pattern LCC implementation is represented in
Figure 8, along with the UML sequence diagram in Figure 7
of a run with three sources and one processor .

Peers agree to participate in interactions by subscribing
to published interaction models. The action of subscription
may be proactive, decided directly by a peer, or may be
reactive, after an explicit request by another peer. In
this specific interaction model, there can be any number
of peers subscribed as source, and any number subscribed
as processor, providing different types of data and different
types of processing on the incoming data. During run-time,
there still can be any number of sources, but there can
be only one processor: the selection is performed during
interaction bootstrap.

Assuming that the roles processor and sources are
subscribed by the correct number of peers, when a peer
subscribes to the role user, the DDS starts the interaction
bootstrap process, forwarding all the subscriptions to a
randomly chosen peer that acts as a coordinator. During
bootstrap, the group of actual participants is selected; in
this case the meaningful selection is likely performed by
the user who specifies the data sources and the processor
that are required. After this initial phase is complete, each
participant is aware of every other participant taking part
in the interaction.

Once the interaction starts, the peer in role user is asked
by constraint prepare query(Q) to define the query, that
is forwarded to all the peers playing the role sources.
Their identity is obtained by solving the built-in constraint
getPeers(SourceName, PeerList), that every peer can solve:
the list of peers per role is bound during bootstrap, and is
broadcast to all the participants. To send the query to all
the recipients, the user changes role and assumes the subrole
querier, that recurses over the list of sources Ps by sending
the message query(Q) to the source contained in the head of
the list until the list is empty.



Figure 7: Sequence diagram for a run of the distributed fan-in interaction with 3 sources and 1 sink

a(user,U) ::
null← prepare query(Q) and getPeers(“source”, Ps)
then

a(querier(Q, Ps), U) then

response(S)⇐ a(processor, P)

a(querier(Q,Ps),U) ::
null← Ps = []

or

„
query(Q)⇒ a(source, P)← Ps = [P|Pt] then
a(querier(Q, Pt), U)

«
a(processor,P) ::
null← getPeers(“source”, Ps) then

a(receiver(NS, R), P)← len(Ps, NS) then

response(S) => a(user, U)← compose(R, S)

a(receiver(NS,R),P) ::
null← Ns == 0

or

0@ reply(D)⇐ a(source, P) then

a (receiver(Rn, NSn), P)
← Rn = [D|R] and NSn = NSn− 1

1A
a(source,S) ::
query(Q)⇐ a(user, U) then

reply(D)⇒ a(receiver, P)← extract info(Q, D)

Figure 8: LCC model for fan-in pattern

Each source receives the request message and processes
it by solving the constraint extract info(Q, D). Once
the information has been extracted, it sends the data
directly to the processor. The processor is aware of
the number of sources, having solved the constraints
getPeers(“source”, Ps), to obtain the list of participating
sources and then the constraint len(Ps, NS) to obtain their
number. In order to asynchronously receive each reply,
the processor assumes the subrole receiver, that waits
for message reply(D) to arrive from a source and then
recurses, augmenting the list of received replies. When
all the sources have sent their message, the processor
returns to its main role, composes the different replies using
some domain specific processing algorithm with constraint
compose(Rs, S) and sends them directly to the user with
message response(S). There can be variations in the
protocol: the user can send a message to the processor

specifying various constraints, such as the maximum time to
wait, or the minimum number of acceptable answers from
the sources.

4.1 Expressiveness of LCC
We have demonstrated how it is possible to represent with

a relatively simple protocol and implement with currently
available technology a fully distributed approach for the fan-
in pattern introduced in Section 2 . Fan-out and sequence
patterns are similarly represented and executed.

Service Interaction Patterns [5], discussed in Section 2.1
facilitate the assessment of emerging Web services standards
by providing a common basis on which workflow languages
can be compared. LCC does not have dedicated constructs
for dealing with these common interactions, i.e. no multicast
support, no atomic transaction support. It is outside the
scope of this paper to describe and implement each of the
patterns, this is left to further work. Even with a lightweight
syntax, LCC can implement the majority of patterns.



5. RELATED WORK

5.1 Choreography Languages
The Web Services Choreography Description Language

(WS-CDL) is the proposed standard for service choreogra-
phy. However, WS-CDL has met criticism [4, 10] through
the Web services community. It is not within the scope of
this paper to provide a detailed analysis of the constructs
of WS-CDL, this research has already been presented [12].
However, it is useful to point out the key criticisms with
the language: WS-CDL choreographies are tightly bound
to specific WSDL interfaces, WS-CDL has no multi-party
support, no formal foundation, no explicit graphical support
and incomplete implementations.

Let’s Dance [32] is a language that supports service inter-
action modelling both from a global and local viewpoint. In
a global (or choreography) model, interactions are described
from the viewpoint of an ideal observer who oversees all
interactions between a set of services. Local models, on the
other hand focus on the perspective of a particular service,
capturing only those interactions that directly involve it.

BPEL4Chor [9] is a proposal for adding an additional
layer to BPEL to shift its emphasis from an orchestration
language to a complete choreography language. BPEL4Chor
is a collection of three artifact types: participant behaviour
descriptions, participant topology and participant ground-
ings.

5.2 Discussion
There are an overwhelming number of pure orchestration

languages. However, relatively few targeted specifically
at choreography, in that sense LCC is a contribution in
itself. There are even fewer complete implementations
of choreography languages. However, in order to enact
and validate service choreographies, we consider a concrete
implementation a priority. LCC has a complete implementa-
tion through the OpenKnowledge framework which provides
functionality to enact distributed choreographies over a
peer-to-peer network. In comparison, there are only two
documented, prototype implementations of the WS-CDL
specification. WS-CDL+, an extended specification [15]
has been implemented in prototype form, although only
one version, version 0.1 has been released. A further
partial implementation [12] of the WS-CDL specification is
currently in the prototype phase. The other widely known
implementation is pi4soa [24], an Eclipse plugin which pro-
vides a graphical editor to compose WS-CDL choreographies
and generate from them compliant BPEL. Maestro [8] is an
implementation of the Let’s Dance language and supports
the static analysis of global models, the generation of local
models from global ones, and the interactive simulation
(not enactment) of both local and global modes. In the
BPEL4Chor space, A Web-based editor [7] allows engineers
to graphically build choreography models.

In contrast with WS-CDL, whose original aim was to sim-
ply describe choreographies between collaborating services
and lacked a formal semantics, and BPEL4Chor, whose
semantics was defined through translation into extended
Petri Nets [20], LCC semantics are derived directly from
π-calculus. This has allowed, for example, to write a model-
checker for LCC choreographies [23].

Furthermore, LCC is an executable choreography lan-
guage. Peers do not have to be pre-configured with a

particular choreography definition in advance, as described
in the boot strapping process in Section 3.1. This is a more
flexible, dynamic solution as definitions of choreography
using WS-CDL, Let’s Dance and BPEL4Chor are usually
configured at design-time.

5.3 Techniques in Data Flow Optimisation
For completeness, it is important to consider architectures

which have addressed the workflow bottleneck problem.
The Circulate architecture [3] maintains the robustness
and simplicity of centralised orchestration, but facilitates
choreography by allowing services to exchange data directly
with one another. Performance analysis [2] concludes that a
substantial reduction in communication overhead results in
a 2–4 fold performance benefit across all workflow patterns.
End-to-end patterns demonstrate how the advantage of
using the Circulate architecture increases as the complexity
of a workflow grows.

Service Invocation Triggers [6] are also a response to the
problem of centralised orchestration engines when dealing
with large-scale data sets. Triggers collect the required input
data before they invoke a service, forwarding the results
directly to where the data is required.

In [21] the scalability argument made in this paper
is also identified. The authors propose a methodology
for transforming the orchestration logic in BPEL into a
set of individual activities that coordinate themselves by
passing tokens over shared, distributed tuple spaces. The
model suitable for execution is called Executable Workflow
Networks (EWFN), a Petri nets dialect.

Triana [28] is an open-source problem solving environ-
ment. It is designed to define, process, analyse, manage,
execute and monitor workflows. Triana can distribute sec-
tions of a workflow to remote machines through a connected
peer-to-peer network. OGSA-DAI [16] middleware supports
the exposure of data resources on to Grids and facilitates
data streaming between local OGSA-DAI instances. Grid
Services Flow Language (GSFL) [19] addresses some of the
issues discussed in this paper in the context of Grid services,
in particular services adopt a peer-to-peer data flow model.
Finally, the Grid Superscalar [11] architecture is based on
centralised control but facilitates nodes to store data where
they are generated and forward them directly to where they
are required.

6. CONCLUSIONS
This paper argues that as the number of services and

the size of data involved in workflows increases, traditional
centralised orchestration techniques are reaching the limits
of scalability. Choreography techniques, although more
complex to model, offer a decentralised alternative and for
data-centric workflows, are the optimal architecture.

Through a number of workflow patterns, we have argued
the case for choreography, focusing primarily on optimising
data flow by removing the notion of intermediate data
passing through a centralised orchestration engine.

While orchestration is the dominant architectural ap-
proach, there are relatively few pure choreography lan-
guages and even fewer concrete implementations. To add
to the body of research, we have introduced the Light
Weight Coordination Calculus (LCC), a type of process
calculus used to formally define choreographies and its
corresponding implementation, the OpenKnowledge frame-



work, a choreography-based architecture, providing the
functionality for peers to coordinate in an open peer-to-peer
system. The fan-in pattern was implemented to demonstrate
both LCC and the OpenKnowledge framework. Extensive
data flow optimisation literature was reviewed, covering
pure choreography languages, decentralised orchestration
techniques and Grid toolkits.

6.1 Future Work
The hand-encoding of protocols into the LCC formalism

remains a time-consuming process. We are therefore cur-
rently considering a number of approaches which will permit
protocols to be constructed in a more efficient manner.
The simplest approach is the provision of a graphical tool
for constructing protocols. Beyond this, we would like to
support the automatic generation of protocols, i.e. the
outcome of a planning process.

Full pattern analysis of LCC based on the Service Inter-
action patterns is currently underway.
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