
Self Managing Monitoring for Highly Elastic Large Scale
Cloud Deployments

Jonathan Stuart Ward
University of St Andrews

jonathan.stuart.ward@st-andrews.ac.uk

Adam Barker
Univeristy of St Andrews

adam.barker@st-andrews.ac.uk

ABSTRACT
Infrastructure as a Service computing exhibits a number of
properties, which are not found in conventional server de-
ployments. Elasticity is among the most significant of these
properties which has wide reaching implications for appli-
cations deployed in cloud hosted VMs. Among the applica-
tions affected by elasticity is monitoring.

In this paper we investigate the challenges of monitor-
ing large cloud deployments and how these challenges differ
from previous monitoring problems. In order to meet these
unique challenges we propose Varanus1, a highly scalable
monitoring tool resistant to the effects of rapid elasticity.
This tool breaks with many of the conventions of previous
monitoring systems and leverages a multi-tier P2P architec-
ture in order to achieve in situ monitoring without the need
for dedicated monitoring infrastructure.

We then evaluate Varanus against current monitoring ar-
chitectures. We find that conventional monitoring tools per-
form acceptably for small, non changing cloud deployments.
However in the case of large or highly elastic deployments
current tools perform unacceptably incurring increased la-
tencies, high load and slowed operation necessitating that
a new, alternative tool be used. Further, we demonstrate
that Varanus maintains low latency monitoring with limited
demand upon resources, even during during periods of high
elasticity.

1. INTRODUCTION
Cloud computing has made computing at scale available

to all through a pay-per-use model. While previously the
deployment of large scale systems required significant funds
and resources, it is now feasible for individuals to deploy a
large number of transient cloud virtual machines (VMs) for
a short period of time. This new-found availability has put
scalability at the forefront of system design.

1Varanus is the genus name of the monitor lizard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DIDC 2014, June 23, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2913-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2608020.2608022 .

A deployment of cloud VMs differs from a conventional
physical server deployment [12] [14]. Cloud deployments are
inherently elastic, which is a key benefit of cloud comput-
ing [10]. Elasticity entails the ability for resources to be
provisioned and released as is necessary. The result is that
a cloud deployment can change entirely in composition, scale
and function in a very short period of time. This propensity
for change invalidates many previous system architectures
and requires that new software systems be designed to tol-
erate the properties of elasticity.

Among the systems affected by elasticity is systems mon-
itoring. In all but the most trivial deployments, monitoring
is essential. Allowing for the detection and investigation
of failure, misconfiguration, performance and other issues,
monitoring is a key part of the design, implementation and
maintenance of software systems. In the case of large scale
systems, monitoring is crucial in order to understand com-
plex and emergent system properties. Monitoring at scale,
is however, a significant challenge [16] [22]. It requires the
collection, storage and processing of a large volume of infor-
mation from a vast range of sources. Not only is this pro-
cess data intensive but it is also computationally expensive.
When these challenges are compounded by rapid elasticity
the task puts considerable strain on current tools.

Current monitoring tools originate from previous paradigms
of computing including Cluster [19], HPC [13], Grid [20] and
conventional server computing [15], domains which have dif-
fering requirements to cloud computing [4] [17]. Despite
the differences, many of these tools have been retrofitted to
monitor cloud deployments and do not make provisions for
many of cloud computing’s unique properties [1]. As a result
of this, many existing tools only function well for small de-
ployments which exhibit limited elasticity [11]. When mon-
itoring larger, elastic deployments many existing tools ex-
hibit significant latencies and overheads which render them
ineffectual copperegg. In addition to the operation of mon-
itoring being costly, these architectures also result in an
overhead of additional infrastructure. Furthermore, this has
the potential to incite a classical problem: who watches the
watchers. Current common practice is to augment current
tools with a complex array of plugins and configuration or to
build bespoke tools. This requires significant development
time and expense and is unavailable to many cloud users.

We therefore contend that it is necessary to design a new
monitoring tool for large scale cloud deployments, which
abandons conventional monitoring architectures. This paper
attempts to quantify the challenges of monitoring a cloud de-
ployment, primarily the challenges arising from rapid elas-

3

System Origin Architecture
Nagios Server Monitoring Hierarchical Pull
Ganglia HPC Hybrid Push/Pull
CloudWatch Amazon Abstracted Push
Collectd UNIX monitoring Hierarchical Push
Big Brother Server Monitoring Hierarchical Pull

Figure 1: Comparison of common cloud monitoring
tools

ticity and from scale. To this end we describe the effects of
these properties and propose a series of strategies in order
to mitigate these properties. We then propose Varanus, a
new monitoring system utilising these strategies in order to
provide robust and reliable monitoring for large scale cloud
deployments.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the current systems which are frequently
used to monitoring cloud systems. Section 3 describes the
motivations for the development of a cloud based monitor-
ing system. Section 4 describes our architecture and it’s
implementation. Sections 5 and 6 evaluate our architecture
against current architectures.

2. RELATED WORK
There are a number of specific monitoring systems which

are commonly used for monitoring cloud systems, the most
prominent of which are summarised in Figure 1, in detail
these are:

Nagios [15] is the de facto standard Open source monitor-
ing system. It provides a wide range of host and network
monitoring plugins allowing for the monitoring of a consid-
erable range of infrastructure and software. Architecturally,
Nagios uses a central server to poll monitored servers ei-
ther directly of through an intermediary server. Nagios uses
a range of custom and standard protocols to interact with
monitored servers and relies upon an SQL database for stor-
age.

Collectd [3] is a UNIX data collection daemon which pro-
vides an efficient mechanism for pushing monitoring data
to a multicast group, server or server hierarchy. Collectd
utilises its own binary protocol for compact data encoding
and is frequently used alongside RRDTool to store the col-
lected data. It serves as the basis for several cloud based
monitoring solutions including Rightscale Monitoring [6].

Ganglia [13] is a scalable resource monitoring primarily
intended for monitoring HPC, cluster and grid deployments.
Ganglia utilises a push mechanism to federate monitoring
state and then a hierarchical pull mechanism to aggregate
federated state to a top level server. Ganglia utilises XML
and XDR for data representation and relies upon RRDTool
for data storage.

CloudWatch [18] is Amazon Web Service’s monitoring as
a service tool. The inner workings of CloudWatch are un-
certain due to it’s proprietary nature. CloudWatch allows
state can be pushed via a rate limited API which can then be
accessed via a web interface. Amazon abstracts over the un-
derlying monitoring resources however given the tool’s abil-
ity to scale there is inevitably a significant pool of resources
underlying it.

2.1 Architectures
It is common practice for stakeholders to deploy a moni-

toring system based upon tools designed for an alternative
domain. These tools are deployed either as part of a larger
system or as a full system in an of themselves. Each of these
systems implements one of the following architectures [24]:

• Flat pull model. This is the architecture employed by
Nagios, The Windows Management Instrumentation,
Icinga, Xymon and Cacti. A central server polls a set
of monitored servers according to a schedule that it
computes when clients leave and join. The schedule
can be adjusted to poll metrics at a different rate if
necessary.

• Hierarchical pull model. A modification of the above
architecture, the central server polls a hierarchy of
monitoring servers which in turn poll a pool of moni-
tored servers.

• Hierarchical Push Model. This is similar to the ar-
chitecture employed by Ganglia and Collectd. Agents
push monitoring state at their own volition to one of a
set of servers which in turn pushes the collected state
to a central server.

3. ELASTICITY AND MONITORING
Elasticity is the ability of a deployment to adapt to chang-

ing requirements by allocating or deallocating resources. Elas-
ticity allows a deployment to adapt to meet new demands
by changing the number of VMs and by changing the types
of VMs. Both of these properties are challenging to mon-
itoring tools. The latter presents a logical challenge: how
to enumerate and understand change. The former, however,
presents a fundamental challenge to distributed applications
and can potentially inhibit monitoring.

Any rate of change of deployment membership is poten-
tially problematic as many current tools are far from auto-
nomic and require manual configuration to add and remove
monitored hosts [1]. When new VMs are instantiated they
must be bootstrapped to join the deployment, which is often
a costly operation. When VMs are terminated any shared
state or workloads must be redistributed among the remain-
ing VMs and there is the risk of data loss if redistribution
cannot occur before the VM is terminated. If a deployment
is highly elastic and is frequently undergoing change then the
effects of instantiation and termination constantly occur.

The implications of this aspect of elasticity are usually
not severe. The reason for this is that instantiation and
termination occur based upon the needs of a single applica-
tion within the deployment. In current common use cases,
instantiation and termination occurs based upon the load
encountered by a web application. As load increases addi-
tional VMs are provisioned and as load subsides those addi-
tional VMs are terminated. As there is a direct correlation
between an application and VM provisioning there is no sud-
den termination. Termination occurs when it is convenient
for the application; when load has subsided and less work is
being performed. This means that for the web application
the effects of elasticity are primarily positive. For applica-
tions running in the VMs other than the web application the
effects are potentially negative.

For applications running alongside the main application
(in this use case, a web application) the instantiation and

4

(a) Fixed Architecture (b) Elastic Architecture With Gradual
Change in Load

(c) Elastic Architecture With Exponential
Change in Load

(d) Elastic Architecture With Random
Change in Load

Figure 2: Autoscaling Cloud Deployments With Varying Levels of Load

termination of VMs does not occur when most convenient.
The requirements of ’secondary’ applications, such as mon-
itoring software, are ignored. The implications is that soft-
ware running alongside the primary application must be able
to handle the sudden addition and removal of VMs in as
graceful a manner as possible.

3.1 Quantifying Elasticity
In order to design applications which tolerate elasticity, it

is necessary to understand the patterns of VM instantiation
and termination that commonly occur. Elasticity in most
common use cases is based upon the use of a load balancer.
The load balancer handles incoming requests and spawns
additional VMs if the volume of requests exceeds a given
threshold and then terminates VMs when demand subsides.

In order to examine elasticity, we deployed a simple web
application on Amazon Web Services which made use of the
load balancing autoscale feature. As request rates increase
beyond a standard set of thresholds the load balancer instan-
tiates additional VMs to handle the load. Load was gener-
ated using the Apache JMeter Web Server testing tool [5]
over a 4 hour period, according to three access patterns: a
gradual step up and step down in load, an exponential step
up and logarithmic step down in load and a randomly gen-
erated change in load. Additionally an application which
does not autoscale and remains at a fixed size is deployed as
a comparison. Figure 2 shows the number of VMs that the
load balancer instantiated to meet the demands of load.

These patterns of elasticity represent some of the typi-
cal patterns that cloud deployments will encounter. The

relatively sudden increases and decreases present significant
challenges for the software running along side the primary
application. These applications, which include monitoring
tools will suffer from the negative effects of elasticity. The
patterns of elasticity described in this Section have been
adapted into models which are used to evaluate monitor-
ing architectures in Section VII to determine how well they
handle this aspect of rapid elasticity.

4. VARANUS
Varanus is a scalable distributed monitoring tool which is

resistant to rapid scalability. In lieu of a conventional hi-
erarchy, Varanus employs a layered gossip architecture [9]
with a novel grouping scheme which provides efficient data
collecting and analysis over existing resources. We propose
Varanus as a means to handle the challenges presented in the
previous Sections, and as an alternative to previous moni-
toring paradigms which are not well suited for monitoring
large scale cloud deployments. This Section describes the
design of Varanus.

4.1 Communication
In lieu of a conventional unicast hierarchy, communication

of monitoring data is achieved via the use of a layered prob-
abilistic multicast or gossip protocol. In large scale cloud
deployments individual VMs operate under a range of com-
putation and communication constraints. By distributing
the computational complexity of an operation over the sys-
tem, gossip protocols offer a means to develop mechanisms
better suited to large scale systems. Gossip protocols have

5

Figure 3: Architectural Overview of Varanus. The panel to the left represents the internal state stored at
a single VM. This is the state propagated via the gossip protocol. The panel to the right represents VM
groupings as described in section 4.3. The varying types of line denote communication between groups as
defined by Section 4.2.

been demonstrated to be effective mechanisms for providing
robust and scalable services for distributed systems includ-
ing information dissemination [2], aggregation [7] and failure
detection [21].

The basic operation of the Varanus gossip protocol con-
sists of the periodic, pairwise propagation of state between
two processes. This mechanism underpins the data col-
lection and agreement protocols which support monitoring
functions. Each monitoring agent participates in a gossip
based overlay network. Using this overlay monitoring agents
propagate and receive state from other, nearby, agents. This
is achieved by performing a pull-push operation with neigh-
bouring correspondents. The rate of dissemination of data
from a single process to all other processes can be described
by the following equation:

St+1 = Tinterval × Fanout× StXt

n
(1)

where S is the number of susceptible processes (those which
have not yet received the information), X is the number of
infected processes (those which have received the informa-
tion), n is the number of processes and t is the current time
step. Therefore, the delay in propagating information can
be greatly reduced by decreasing the interval at which com-
munication occurs (thus increasing the frequency) and by
increasing the fanout value (thus increasing the number of
targeted VMs).

In addition to this mechanism, preferential VM selection
is used to reduce the delay in propagating state. VMs are
selected based on a weighting scheme which uses round-trip
time estimates in order to select VMs which are topologically
closer. Each round of gossip is spatially weighted according
to the scheme proposed in [8], using RTT as a distance met-

ric in order to propagate updates to all nodes within distance
d within O(log2 d) time steps.

This scheme results in increased memory usage and con-
stant background communication but achieves rapid state
propagation and resilience to elasticity and failure. Within
a cloud where there is high bandwidth, low latency and no
service metering this trade-off is acceptable.

4.2 Communication Hierarchy
In order to best exploit the topology of IaaS clouds Varanus

exhibits different behaviours at each level of the gossip hi-
erarchy. The rationale for this hierarchy is rooted in the
differences between intra and inter cloud communication.
Within IaaS environments there are high bandwidth, low
latency and unmetered network connections. This is true of
virtually all cloud providers. It is also true of any private
cloud with a public network between cloud regions. This en-
vironment lends itself to the use of an unreliable protocol for
rapid and near constant state propagation. Between cloud
regions this is not as feasible, costs arising from latency and
bandwidth metering force communication to be performed
in a slower, more reliable fashion.

The gossip protocol described in Section 4.1, is applied at
every level of the hierarchy. What differs between each level
is the information which is communicated and the frequency
at which communication occurs. There are three levels of the
hierarchy as shown in Figure 3

1. Intra Group: communication between monitoring agents
within the same group. This occurs at a near constant
rate. Each time a state change, deemed notable by
the monitoring agent, occurs the correspondent prop-
agates the new state to it’s group. At this level of gran-
ularity, the full state stored by the monitoring agent is
propagated to its neighbours.

6

2. Inter-Group: communication between monitoring agents
in different groups within the same region. This occurs
at a frequent but non constant rate. Periodically state
is propagated to external groups according to a shift-
ing interval. At this level, only aggregated values for
the region resource usage and a small subset of local
contacts and foreign contacts are propagated.

3. Inter-Region: communication between monitoring agents
in different different cloud regions or data centers. This
occurs proportionally to the inter-group rate. At this
level an aggregate value for the entire region and sub-
sets of the local and foreign contacts are propagated
between regions.

4.3 Virtual Machine Grouping
One of the most common use cases of a monitoring system

is as follows: A user requests information regarding a server
for example: CPU usage or Apache response time. The
monitoring tool then fetches the requested information from
it’s datastore. If sufficiently recent information is unavail-
able it will obtain it from the pertinent VM. The monitoring
tool then visualises the information in an appropriate way
and the user makes a judgement based upon that informa-
tion and then, if necessary, acts appropriately to modify the
system.

In this use case there are potentially multiple interactions
between the monitored server, the datastore, the front end
of the monitoring tool and the user. Dependant upon the
specifics of the monitoring tool, this can result in significant
overhead in order to provide the user with even the most
trivial information. In an autonomic context, this use case
changes as there is no longer a user making the decision, in
their place is a software agent. This raises the question as
to the placement of the equivalent computation. Using the
mechanism describe above, any idle or under utilised VM
could be identified and tasked with the operation. Doing
so would, however, incur many of the same inefficiencies
as per the human orientated computation. Rather, it is
preferable to reduce the overall volume of data movement in
order to perform decisions faster, with as fresh information
as is feasible.

In order to achieve this, we propose a novel grouping
mechanism. While a layered gossip approach reduces com-
munication overhead when compared against a flat approach,
latency and the rate at which information is requested can
be reduced through the use of appropriate grouping. In
Varanus, this grouping is achieved though the use of feature
vectors. Upon instantiation a VM computes a feature vector
which describes the following, in order of importance:

1. Location. The location of the virtual machine down
to the smallest unit. The exact nomenclature is cloud
dependant but in general terms, this will correspond
to a data center, availability zone, region or other ab-
straction.

2. Primary software deployed in the VM. Software that
the VM was deployed in order to provide, including
but not limited to web servers, databases, in memory
caches, distributed computation tools and so forth.

3. Seed information. Information provided to the VM
at boot time including but not limited to the id of
the stakeholder who instantiated the VM, hostnames

and addresses of common resources and user provided
annotations.

4. Secondary software, other than monitoring tools. Soft-
ware which supports the primary application or other-
wise adds additional functionality.

This information is represented using a weighted 4 dimen-
sional feature vector which describes the above attributes.
The attributes are weighted according to the impact they
have on communication. Location serves as the most per-
tinent factor as it is largely responsible for determining la-
tencies and other costs. The other factors imply relations
between VMs in the forms of shared purpose or use of shared
resources. This suggests the likelihood that information col-
lected from a VM will be relevant to a similar VM.

Upon instantiation a VM computes its own feature vector
and obtains a list of groups from a bootstrap node. The
VM then compares its own feature vector against an aver-
aged feature vector describing the properties common to the
group. The VM joins the group which is deemed the most
similar according to an algorithm based upon the k-Nearest
Neighbours algorithm [23]. If according to the KNN algo-
rithm, a VM falls within a significant distance of multiple
groups the VM can join all of the related groups.

This grouping mechanism has the result of placing related
VMs within logical proximity. According to the above com-
munication scheme, data travels the least distance to related
VMs allowing analytics and autonomic decision making to
occur with reduced latency and as close to the pertinent
data as possible.

4.4 Interaction
Unlike conventional client-server based monitoring tools

Varanus has no single monitoring server and therefore no
single point of communication. Queries to obtain monitoring
data are routed and results fetched according to the gossip
scheme described above. In order for an external user to
communicate with a Varanus deployment a node must serve
as a gateway to accept, route and return the response to
requests. Any node can act in this capacity. A variation of
the group allocation algorithm is used to select a optimum
node such that the gateway node is as close to the relevant
data as possible. This ensures that requests for monitoring
data can be fulfilled in the shortest possible time.

5. EXPERIMENTAL EVALUATION
Our experiments focus upon elasticity and scalability and

investigate how the proposed architecture compares against
previously established architectures. The range of monitor-
ing tools that are available do not lend themselves to easy
investigation. The vast disparities in APIs, data represen-
tation formats, languages and protocols found in current
monitoring tools prevents unbiased comparisons of the un-
derlying architectures. Therefore, in order to evaluate the
common monitoring architectures we developed a series of
purpose build tools which implement the relevant architec-
tures. This allows for a like for like comparison regarding
the properties of the monitoring architecture.

Our experiments were conducted on Amazon EC2, using a
test bed of 200 VMs. Each VM was a m1.medium instance
with 64 bit CPU, 3.75GiB memory and around 100Mbps
network bandwidth. Varanus, and the other monitoring ar-
chitectures were implemented in Java using ZeroMQ to pro-

7

(a) Random Elasticity (b) Exponential Elasticity

Figure 4: CPU Usage During Elasticity

vide message passing and Google Protocol Buffers to provide
data encoding.

Our evaluation examines four monitoring architectures. A
flat pull architecture, a hierarchical pull architecture, a hi-
erarchal push architecture and the architecture of Varanus.
These architectures are described in section 2 and 4 respec-
tively.

6. RESULTS

6.1 Resource Usage During Elasticity
The graceful handling of VMs joining and leaving the

system is essential to ensure continuous monitoring undis-
tributed by change. Figures 4(a) and 4(b) show CPU usage
of each monitoring system as a percentage of overall sys-
tem CPU whilst, respectively, an exponential and random
elasticity occurs.

It is clear that in both cases that elasticity produces high
resource consumption in the pull models in both the ex-
ponential and random case. During a period where VMs
are being instantiated monitoring servers must handle joins
and recompute the polling schedule while still performing
regular polls. At its peak in the exponential case, the flat
pull monitoring scheme accounts for 9% of the entire de-
ployment’s CPU usage. Meanwhile, due to additional re-
source being dedicated to monitoring, the hierarchical pull
accounts for 14% of system wide CPU usage. For a func-
tion other than the primary function of the deployment, that
level of resource usage in unacceptable and has the potential
to interfere with the deployments primary application. The
push model improves upon this performance by consuming
11% of system wide CPU at peak time. This resource usage
is primarily due to monitoring servers having to handle a
sudden increase in the number of join messages. Varanus
meanwhile consumes 6% of CPU resources during the ma-
jority of the exponential case, encountering a peak of 8%
usage at the greatest point of elasticity. Both the random
and exponential elasticity cases shows that the pull and push
systems have more conservative resource demands while the
system is smaller and whilst it experiences less elasticity.
At the start and end of the exponential test and intermit-

tently during the random test resource usage for the flat pull
reaches as low as 5%, the hierarchical pull, 6% and the hier-
archical push 4%. Varanus maintains around a constant 6%
resource usage throughout.

6.2 Propagation Delay
Figure 5(a) shows the time required for state from a mon-

itored VM to be made available to an external consumer.
The comparatively wide range of delays encountered by the
two flat models is due to the manner in which polling oc-
curs. With a polling interval of 5 seconds there is an explicit
latency until fresh data is obtained. The delay in obtaining
fresh data is therefore dependant upon when during that
polling interval the data is collected. The hierarchical push
model and Varanus, fair better with around a 50% reduced
propagation delay. This reduction is due to the push mech-
anism ensuring that fresh data is transmitted when it be-
comes available, eliminating a polling latency. The discrep-
ancy between the range of delays encountered by the push
model and Varanus is due to the nature of the gossip pro-
tocol. The delay in Varanus is dependant upon the gateway
node’s distance from the producer. The closer the gateway
is to the producer, the faster the rate of propagation. In the
mean case the gateway is sufficiently close to the producer
such that the data is received in a small number of gossip
rounds making the mean delay comparable to the mean de-
lay encountered by the hierarchical push. It the worst case,
Varanus yields a 5% slowdown against the hierarchical push,
while in the best case yields a 12% improvement against the
hierarchical push. This is not, however, the primary use case
of Varanus. Instead, Varanus concerns itself with reducing
inter-deployment propagation delay in order to support au-
tonomic monitoring and places less emphasis on delivering
state to human users or external consumers as per previous
tools.

6.3 Propagation Delay During Elasticity
The previous test was repeated whilst undergoing each

of the elasticity models. Figure 5(b) shows the propaga-
tion delay over time while each architecture underwent the
random elasticity model.

8

(a) Propagation Delay

(b) Propagation Delay During Random Elasticity

(c) Internal Propagation Delay

(d) Join Delay

Figure 5: Monitoring Latency Results

In the pull systems, propagation delay severely increases
to up to around 30 seconds for both at their peak. The re-
peated computation required to successfully propagate mon-
itoring state fails to be completed on time and the high load
encountered by monitoring components reduces the respon-
siveness of the monitoring architecture further. In the push
system there is a moderate significant increase delay during
high elasticity, around a 100% increase from when the sys-
tem is stable in the worst case taking around 8 seconds to
propagate new state. Varanus meanwhile maintains a near
constant propagation delay of around 4 seconds with a peak
of 6 seconds when the system is at high elasticity.

6.4 Inter-Deployment Propagation Delay
Inter-Deployment Propagation Delay, that is the time taken

to propagate monitoring state to VMs within the cloud de-
ployment. This is desirable for a number of use cases as
monitoring state is equally valuable to the software operat-
ing in VMs as is to external users. Access to monitoring
state allows applications to alter their behaviour, predict
load, eliminate redundancy and a number of other benefi-
cial autonomic applications. Without access to monitoring
data, it is difficult to implement any autonomic behaviours.
As shown in figure 5(c), Varanus achieves significantly re-
duced delay compared to current architectures. Monitor-
ing state is propagated to related and nearby hosts and the
delay incurred by the push and pull systems is only expe-
rienced in Varanus if an entirely unrelated VM (according
to the group mechanism) requests monitoring state. There-
fore, in its best case, Varanus has up to a 300% faster inter-
nal propagation rate compared against other architectures.
This makes Varanus far superior for providing state to au-
tonomic applications or other software where fresh data is
beneficial.

6.5 Join Delay
In a highly elastic system the join operation will be per-

formed frequently. The longer the join operation the longer
there is period where no monitoring of the joining VM oc-
curs. Figure 5(d) shows the time required to complete the
join operation for each of the monitoring architectures. In
the case of the push model there is no formal join opera-
tion, joining is achieved by simply communicating with the
hierarchy. This is similar to join operation of Varanus, but
this operation is preceded by the grouping mechanism, ac-
counting for the 8% increase in time between the mean join
time of Varanus and the push model. Both the push model
and Varanus achieve significantly faster joins than the pull
systems. The pull systems require the monitoring servers to
be notified, the polling schedule to be updated and a polling
cycle to occur prior to state being made available.

7. CONCLUSION
Cloud monitoring is a significant challenge. Monitoring

at scale and monitoring a constantly changing deployment
is extremely costly. Despite the cost, it is necessary and
it is therefore essential to develop tools better suited to
cloud monitoring. Varanus, our proposed monitoring tool
offers demonstrably better scalability and tolerance to rapid
elasticity than other existing monitoring architectures. It is
clear that if a cloud deployment is operating at scale with
frequent changes occurring then existing architectures are
not sufficient. Increased delay, high load and poor flexibility

9

inhibit more traditional centralised architectures when op-
erating at scale and experiencing elasticity. It is clear that
existing tools are well suited and sufficient for smaller de-
ployments or mid size deployments which are not susceptible
to rapid change. In the event of these two phenomena, more
domain specific monitoring is required.

8. REFERENCES
[1] Giuseppe Aceto, Alessio Botta, Walter de Donato, and

Antonio PescapÃĺ. Cloud monitoring: A survey.
Computer Networks, 57(9):2093 – 2115, 2013.

[2] Anwitaman Datta and Rajesh Sharma. Godisco:
selective gossip based dissemination of information in
social community based overlays. In Proceedings of the
12th international conference on Distributed
computing and networking, ICDCN’11, pages 227–238,
Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Florian Forster. Collectd The system statistics
collection daemon.

[4] I. Foster, Yong Zhao, I. Raicu, and Shiyong Lu. Cloud
computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008.
GCE ’08, pages 1–10, 2008.

[5] Emily H Halili. Apache JMeter: A Practical
Beginner’s Guide to Automated Testing and
performance measurement for your websites. Packt
Publishing Ltd, 2008.

[6] Rightscale Inc. Rightscale monitoring system. http:
//support.rightscale.com/12-Guides/RightScale_

101/08-Management_Tools/Monitoring_System, 2014.

[7] Márk Jelasity, Alberto Montresor, and Ozalp
Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3):219–252,
August 2005.

[8] David Kempe, Jon Kleinberg, and Alan Demers.
Spatial gossip and resource location protocols. In
Proceedings of the thirty-third annual ACM symposium
on Theory of computing, STOC ’01, pages 163–172,
New York, NY, USA, 2001. ACM.

[9] A-M Kermarrec, Laurent Massoulié, and Ayalvadi J.
Ganesh. Probabilistic reliable dissemination in
large-scale systems. Parallel and Distributed Systems,
IEEE Transactions on, 14(3):248–258, 2003.

[10] Ali Khajeh-Hosseini, David Greenwood, James W
Smith, and Ian Sommerville. The cloud adoption
toolkit: supporting cloud adoption decisions in the
enterprise. Software: Practice and Experience,
42(4):447–465, 2012.

[11] Jonah Kowall. Got nagios? get rid of it.
http://blogs.gartner.com/jonah-kowall/2013/02/

22/got-nagios-get-rid-of-it/.

[12] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John
Messina, Lee Badger, and Dawn Leaf. Nist cloud
computing reference architecture. NIST special
publication, 500:292, 2011.

[13] Matthew L Massie, Brent N Chun, and David E
Culler. The ganglia distributed monitoring system:
design, implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[14] Michael Armbrust and Armando Fox and Griffith,
Rean and Anthony D. Joseph and Randy Katz and
Andy Konwinski and Lee, Gunho and Patterson,

David A. and Ariel Rabkin and Ion Stoica and Matei
Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. (UCB/EECS-2009-28), Feb 2009.

[15] Nagios Enterprises. Maximizing Nagios XI
Performance.

[16] Northrop, L. and Feiler, P. and Gabriel, R. P. and
Goodenough, J. and Linger, R. and Longstaff, T. and
Kazman, R. and Klein, M. and Schmidt, D. and
Sullivan, K. and Wallnau, K. Ultra-Large-Scale
Systems - The Software Challenge of the Future.
Technical report, Software Engineering Institute,
Carnegie Mellon, June 2006.

[17] N. Sadashiv and S.M.D. Kumar. Cluster, grid and
cloud computing: A detailed comparison. In Computer
Science Education (ICCSE), 2011 6th International
Conference on, pages 477–482, 2011.

[18] Amazon Web Services. Amazon, inc.[online].
http://aws.amazon.com/cloudwatch/.

[19] Matthew J Sottile and Ronald G Minnich. Supermon:
A high-speed cluster monitoring system. In Cluster
Computing, 2002. Proceedings. 2002 IEEE
International Conference on, pages 39–46. IEEE, 2002.

[20] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V. Taylor, and R. Wolski. A grid monitoring
architecture, 2002.

[21] Robbert van Renesse, Yaron Minsky, and Mark
Hayden. A gossip-style failure detection service. In
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing, Middleware ’98, pages 55–70, London, UK,
UK, 1998. Springer-Verlag.

[22] Jonathan Stuart Ward and Adam Barker. Semantic
based data collection for large scale cloud systems. In
Proceedings of the fifth international workshop on
Data-Intensive Distributed Computing Date, DIDC
’12, pages 13–22, New York, NY, USA, 2012. ACM.

[23] Xiaohui Yu, Ken Q Pu, and Nick Koudas. Monitoring
k-nearest neighbor queries over moving objects. In
Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, pages 631–642. IEEE,
2005.

[24] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy
of grid monitoring systems. Future Generation
Computer Systems, 21(1):163 – 188, 2005.

10

