
Algorithms for Optimising Heterogeneous Cloud Virtual Machine Clusters

Long Thai

School of Computer Science
University of St Andrews

Fife, UK
Email: ltt2@st-andrews.ac.uk

Blesson Varghese

School of EEE and Computer Science
Queens University Belfast
Belfast, United Kingdom

Email: varghese@qub.ac.uk

Adam Barker

School of Computer Science
University of St Andrews

Fife, UK
Email: adam.barker@st-andrews.ac.uk

Abstract—It is challenging to execute an application in a
heterogeneous cloud cluster, which consists of multiple types
of virtual machines with different performance capabilities and
prices. This paper aims to mitigate this challenge by proposing
a scheduling mechanism to optimise the execution of Bag-
of-Task jobs on a heterogeneous cloud cluster. The proposed
scheduler considers two approaches to select suitable cloud
resources for executing a user application while satisfying pre-
defined Service Level Objectives (SLOs) both in terms of exe-
cution deadline and minimising monetary cost. Additionally, a
mechanism for dynamic re-assignment of jobs during execution
is presented to resolve potential violation of SLOs.

Experimental studies are performed both in simulation and
on a public cloud using real-world applications. The results
highlight that our scheduling approaches result in cost saving
of up to 31% in comparison to naive approaches that only
employ a single type of virtual machine in a homogeneous
cluster. Dynamic reassignment completely prevents deadline
violation in the best-case and reduces deadline violations by
95% in the worst-case scenario.

I. INTRODUCTION

With the advent of cloud computing, users can use

on-demand resources offered by cloud providers to build

clusters, defined as cloud virtual machine (VM) clus-
ter. Such clusters can be dynamically reconfigured by

adding/removing resources, such as VMs, in order to ac-

commodate the demands of the workload and to achieve

desired performance. However, this task can be challenging

since cloud providers offer a wide variety of VM types with

different performance capabilities. This challenge is further

complicated by the monetary cost incurred by renting VMs.

This paper aims to address the challenge of building a
heterogeneous cloud VM cluster by determining the number
and type of VMs to achieve the desired performance while
minimising the incurred monetary cost. We focus on Bag-
of-Tasks (BoT) applications, which consist of independent

tasks that are widely used by scientific communities [1]

and commercial organisations [2]. The desired performance

of the application is represented as a deadline, a user

defined time constraint within which the application needs

to complete execution; this is a commonly reported Service

Level Objective (SLO) [3].

We address the above challenge in two steps. Firstly, we

determine the number of VMs required to execute a newly

submitted workload. Secondly, we monitor the actual exe-

cution on the VMs and dynamically reallocate the workload

to prevent deadline violations.

The first contribution of this paper is the development of

two approaches that construct a cost-effective heterogeneous

Cloud VM cluster in order to execute BoT applications

within user specified deadlines while minimising the overall

execution cost. The first approach achieves an optimal

solution that has minimum monetary costs, but can take

a considerable amount of time. The second approach is

faster but generates sub-optimal solutions. Our approaches

are compared against existing approaches that use a single

instance type for developing a homogeneous cluster. The

experimental results show that when using the proposed

approaches there is a cost saving of 4% to 31%.

The second contribution is a novel mechanism for dy-

namic reassignment which detects and resolves potential

deadline violations during runtime. Experiments highlight

that deadline violations that are likely to occur due to

estimation errors can be reduced by at least 95%.

This remainder of this paper is structured as follows.

Section II presents related work. Section III proposes a

mathematical model for selecting resources for single and

multiple jobs. Mechanisms for handling job submissions are

presented in Section IV. Section V proposes a dynamic as-

signment mechanism. Our research is evaluated in section VI

using simulation and real-world jobs on the cloud. Section

VII concludes this paper by considering future work.

II. RELATED WORK

Optimising heterogeneous cloud VM clusters based on

objectives, such as a user defined deadline for executing a

workload or minimising cost of execution when multiple

VMs with varying performance are available, has been

investigated by the research community due to the popularity

of both the application and resource models.

There is research that has focused on maximising perfor-
mance while minimising cost of executing BoT application
on the cloud [4], [5], [6]. These approaches require the trade-

off between performance and cost to be represented as a

numerical value which is often not easy to be calculated as

it needs to in turn consider two different metrics.

2016 IEEE 8th International Conference on Cloud Computing Technology and Science

2330-2186/16 $31.00 © 2016 IEEE

DOI 10.1109/CloudCom.2016.30

118

Scheduling multiple BoT applications on the cloud so

that both deadline and budget constraints can be satisfied
has been proposed [7]. However, the focus is on resource

selection to determine the number of VMs of each type

under the assumption that workload distributions are known

in advance. On the other hand, our proposed approaches

support both resource selection and workload allocation

without making an assumption on the workload distribution.

Since computing on cloud resources incurs costs there

is a need to satisfy the given budget constraint while
maximising performance [8] [9]. In this paper, we argue

that performance constraints, such as the execution deadline,

which represents the desired performance that users want to

achieve and is directly related to user experience is equally

important as budget constraints. In existing research, we also

note users are only able to schedule a single job, which is

not the case in the research presented in this paper.

Finally, there is research in optimising the execution

of BoT applications on the cloud focusing on satisfying
deadline constraint while minimising the cost, which is also

the objective of this paper. Bossche et al. [10] proposed to

offload workload from private cloud to public cloud when

necessary in order to satisfy execution deadlines. However,

the proposed approach only supported a single application.

Menache et al. [11] proposed an approach to calculate the

number of on-demand and spot instances in order to execute

all BoT jobs within their deadline while reducing the cost.

However, the authors only considered one type of instance

type, i.e. homogeneous cloud VM cluster, which does in

reality harness the potential of building clusters with a wide

variety of options provided by cloud providers. In our previ-

ous work [12], we presented an approach for scheduling BoT

jobs with a deadline on the cloud. This paper significantly

extends our previous work by proposing different scheduling

approaches, investigating the trade-off between the solving

time and a solution’s optimality, and performing extensive

experiments to present the benefits of using heterogeneous

cloud VM cluster instead over homogeneous clusters. This

paper also highlights the benefit of dynamic reassignment.

III. RESOURCE SELECTION MODEL

In this section, we propose two models to address the

problem of i) determining the number and type of VMs in

a heterogeneous Cloud VM cluster consisting of instances

of different types, and ii) allocating workload to each VM.

A. Environment Model

Let IT = {it1...itm} be the list of instance types, which

are the prototypes to create instances or virtual machines

(VMs). Cost per hour of an instance type is denoted as cit.
Let A = {a1...an} denote the list of applications executed

on the cloud. In this paper, we assume prior knowledge of

all applications based on the fact that most applications exe-

cuted in data centres are recurring [3], [13]. Task execution

time ea,it is the average time (in seconds) to execute one
task of an application a on an instance of type it.

Let J denote the list of jobs to be scheduled. Each job

j belongs to an application aj and contains a number of

tasks nj . Its deadline is dj . We assume prior knowledge

of applications but not individual jobs; we know which

applications are executed but not when they are executed

and the number of tasks.

Let V denote the list of instances or VMs. An instance

type of an instance v is denoted as itv . As each instance

needs a certain amount of time to be booted, let β be the

average boot time. Let ej,v be the amount of time that an
instance v executes tasks of a job j, which also means that

ej,v = 0 if v does not execute any tasks of j.

Let rv be the running time of an instance v, which can

be calculated by adding the sum of the execution times of

all jobs on v with the average boot time. However, rv is 0
if it does not execute any task at all:

rv =

{
β +

∑
j∈J ej,v, if

∑
j∈J ej,v > 0

0, otherwise
(1)

B. Multiple and Single Job Approaches

We propose two approaches to determine the number of

VMs within a cloud VM cluster for executing the job(s).

The first approach aims to find the optimal solution for all

submitted jobs while the second approach achieves a local

optimal for each job.

1) Approach 1: Resource Selection for Multiple Jobs:
First, let X be a list of binary values which indicate whether

instances are created or not. In other words, for v ∈ V ,

xv = 1 if an instance is created and a user has to pay for

it. Otherwise, xv = 0.

We assume that execution of jobs on an instance is ordered

in a similar manner to how jobs are ordered within J . For

instance, if j1 is ordered before j2 in J , then j1 must be

executed before j2 on all instances. In this paper, we use a

pre-defined priority of jobs for ordering.

Since jobs are sequentially executed based on predefined

order, on any given instance, the sum of the boot time β
and all job execution times cannot exceed the deadline of

the last executed job, i.e.:∑
j∈J

ej,v ≤ dj − β (2)

Given the execution time of a job on an instance and the

time it takes to execute one task, it is possible to calculate

the number of tasks executed on an instance:

nj,v = xv × � ej,v
ej,itv

� (3)

The right hand side of the Equation 3 is multiplied with

the indicator x since an instance needs to be created in order

to execute any tasks. Thus, if an instance v is not created,

119

then the number of tasks of any job executed by v must be

0, since xv = 0. Moreover, a floor function is applied since

each task must be fully executed on an instance.
In order to make sure all tasks of a job are executed an

additional constraint is imposed which is:∑
v∈V

nj,v = nj (4)

The cost of using one instance can be calculated by

multiplying the cost of one hour to the actual using time

rounded up to the nearest hour:

cv = �rv × xv

3600
� × citv (5)

Notably, as a user only has to pay for instances that are

created, i.e. x = 1. Hence, the running time of each instance

needs to be multiplied to the indicator x.
The total cost is the sum of costs of all instances:

COST =
∑
v∈V

cv (6)

The optimisation problem is presented as follows:

minimise COST =
∑
v∈V

cv

subject to
∑
j∈J

ej,v ≤ dj − β

∑
v∈V

nj,V = nj

(7)

2) Approach 2: Resource Selection for Single Job:
Instead of selecting resources for executing multiple jobs,

in the second approach resources are selected for executing

one job, which is hypothesised to be faster, since it aims to

find a local optimal over a global optimal solution. However,

since only one job is considered at a time, the solution may

not be optimal. The comparison between the two approaches

is presented in a later section.
Let nj,it be the number of tasks of job j that one instance

of type it can execute before a deadline:

nj,it = �dj − β

ej,it
� (8)

Let niit be the number of instances of type it. The total

number of tasks executed by instances of type it are niit ×
nj,it. The following constraint is used to execute all tasks

of a job before its deadline:

nj =
∑
it∈IT

(niit × nj,it) (9)

The problem of selecting resource for executing one job

within its deadline is modelled as:

minimise COST =
∑
v∈V

cv

subject to nj =
∑
it∈IT

(niit × nj,it)
(10)

The above model is solved for each job since it finds the

resource to only execute one job.

IV. HANDLING JOB(S)

The submission handling process selects the optimal num-

ber of resources required for the jobs and assigns tasks to

each instance such that they are executed within deadlines.

There may be existing VMs when a batch of jobs arrives.

It is possible for existing VMs to execute new tasks if it does
not result in deadline violations (the execution of a job fin-

ishes after its deadline). If existing VMs can execute all tasks

of the newly submitted jobs, then no additional VMs are

required. The assignment process is presented by Algorithm

1 which loops through each job and given instance. First,

the finish time of an instance is calculated (Line 4). The

finish time on an instance is when it has finished executed

assigned tasks and is ready to start executing new tasks.

Then, the execution time of a job on an instance is the

difference between its deadline and an instance’s finish time

(Line 5). If the execution time is positive, some tasks of

a job to an instance (from Line 6 to Line 8). It should be

noted that we try not to prolong an instance’s finish time.

The reason is that instead of extending an instance’s finish

time for another hour, and pay for it, we can just create a

new one with the same type.

Notably, Algorithm 1 tries to assign as much tasks as

possible to the given list of existing instances. As a result,

it does not guarantee that all tasks will be assigned. New

instances need to be created in order to accommodate tasks

which cannot be assigned to the existing VMs.

Algorithm 1 Assignment

1: function ASSIGN(J, V)

2: for j ∈ J do
3: for v ∈ V do
4: fiv ← finish time of v

5: ej,v ← dj − fiv
6: if ej,v > 0 then
7: nj,v ← ej,v

eaj,itv

8: Assign nj,v of j to v

We propose two algorithms for handling job submissions

corresponding to two approaches presented in Section III-B.

A. Approach 1: Assigning Resources for Multi Jobs

Algorithm 2 uses the model shown in Equation 7 to select

resources for the submitted jobs.

As shown in Line 2, jobs are firstly assigned to a list of

existing instances, denoted as Ve.

If there are any jobs with tasks left, then a list of new

resources denoted as Vn are acquired by solving Model 7

as shown in Line 4. Finally, new instances are added to the

list of existing instances in Line 5.

120

Algorithm 2 Submission Handling

1: function SUBMISSION HANDLING(J, Ve)

2: ASSIGN(J, Ve)
3: if There are jobs with remaining tasks in J then
4: Vn ← solution of Model 7

5: Ve ← Ve ∪ Vn

B. Approach 2: Assigning Resources to Single Job

Algorithm 3 Submission Handling

1: function SUBMISSION HANDLING(J, Ve)

2: for j ∈ J do
3: ASSIGN(j, Ve)
4: if There are remaining tasks in j then
5: Vn ← solution of Model 10

6: ASSIGN(v, Vn)
7: Ve ← Ve ∪ Vn

Algorithm 3 presents the selection of resources when

only one job at a time is considered. It is an iterative

process which performs the following steps for each job: (i)

assigning tasks to existing instances (Line 3) and (ii) creating

and assigning remaining tasks to new instances if necessary

(Line 5 and Line 6). New instances created to execute a job

are added to the list of existing instances (Line 7).

V. DYNAMIC REASSIGNMENT

In the previous section, static scheduling approaches were

presented that are employed before the actual execution

based on the estimated performance of VMs and jobs, such

as task execution time. However, runtime performance is

not guaranteed and it is likely that there may be tasks that

take more (or less) time to be executed than estimated.

This performance variation is not considered when handling

submissions and can result in unexpected delays which lead

to deadline violations. The delay of one job on an instance

leads to a cascading effect whereby all jobs scheduled on

that instance may be delayed.

In this section, we propose a dynamic monitoring and

reassignment mechanism, which aims to prevent deadline

violations by moving tasks from an instance that cannot meet

the specified deadline to another one that can accommodate

extra workload without a risk of deadline violation.

A. Monitoring Progress

Monitoring is periodically performed to retrieve the

progress information of instances. This information for each

instance contains the currently executed job and the number

of tasks that have already executed.

Algorithm 4 Dynamic Reassignment

1: function REASSIGNMENT(V)

2: Vg ← ∅
3: Vr ← ∅
4: for v ∈ V do
5: if v is still executing then
6: w ←current job

7: fe ← w′s estimated finish time

8: if fe > dw then
9: Vg ← Vg ∪ {v}

10: else
11: if v has no remaining job(s) then
12: Vr ← Vr ∪ {v}
13: else
14: st←start time of the next job

15: if NOW < st then
16: Vr ← Vr ∪ {v}
17: Order Vg by estimated violating time

18: Order Vr by allowed receiving time

19: for vg ∈ Vg do
20: for vr ∈ Vr do
21: tr ← receiving time of vr
22: nr ← � tr

evr,aw
�

23: ng ← � fng−dng

evg,aw
�

24: nr ← min(ng, nr)
25: if nr > 0 then
26: Move nr tasks from vg to vr
27: Vr ← Vr\{vr}

B. Dynamic Reassignment Algorithm

Algorithm 4 presents the dynamic reassignment process,

which takes place after the monitoring process and consists

of two parts.

The first part (from Line 2 to Line 16) aims to create

two lists: (i) of potentially violating instances and (ii) of

recipient instances that can receive more tasks. Potentially

violating instances are those whose estimated finish times

are after the deadlines (from Lines 6 to Line 9). On the

other hand, a recipient instance is either idle or has finished

current execution but the start time of the next execution

is in the future (Lines 11 and 16. A recipient instance can

execute extra tasks from the current time to the expected

start time of the next job.

In the second part, tasks are moved from violating in-

stances to recipient instances; the sets of violating and

recipient instances are ordered based on violation time and

allowed receiving time respectively (Lines 17 and 18). The

violation time is calculated as the difference between an

estimated finish time and a deadline. The allowed receiving

time is the amount of time from the current time to the

minimum value of (i) a deadline, (ii) a start time of the next

121

job (if an instance is not idle), and (iii) the termination time

(if an instance is idle).

For each violating instance, the number of tasks that

need to be moved is calculated based on the violating time,

which is the difference between estimated finish time and the

deadline, and the task execution time (Line 23). The number

of tasks a recipient instance can receive is calculated based

on its allowed receiving time (Line 22). If an instance can

receive tasks from a violating instance, then reassignment is

performed (Line 25 and Line 26).

After receiving tasks, the recipient instance is removed

from the list, since it cannot receive more tasks (Line 27).

This is done in order to avoid aggressive reassignment of

tasks from many instances onto an instance.

It should be noted that Algorithm 4 does not guarantee

complete resolution of potential deadline violations, i.e.

when there are not enough recipient instances to receive

tasks from violating ones. This may be resolved by adding

additional instances, which requires further investigation and

will be reported elsewhere.

VI. EVALUATION

This section compares the two proposed approaches

against others that use the same type of instance in a

homogeneous cloud cluster. We use Gurobi1, a commercial

mathematical programming environment to solve the models

represented by Equation 7 and Equation 10.

Our evaluation framework consists of a centralised master

which schedules BoT job execution on the cloud, periodi-

cally monitors and performs dynamic reassignment.

A. Submission Handling Evaluation

In this section, experiments were performed to compare

the single and multi-job submission approaches presented in

Section IV. The effect of four environmental and workload

factors, namely the number of tasks, jobs, instance types

and deadlines, on two metrics - (i) runtime of an approach

to find a solution, and (ii) monetary cost for executing the

submitted jobs - were considered. Four sets of experiment

were performed to evaluate the effect of the above four fac-

tors on the runtime and cost metrics. All sets of experiment

started with 3 instance types, 3 jobs, each comprising 100

tasks, and an average deadline of 1000 seconds.

1) Comparing Runtime: Figure 1 presents the solving

time using single-job and multi-job approaches in different

scenarios. In all cases, the runtime of the single-job approach

is below one second and lower than the multi-job approach.

Figure 1a and Figure 1b shows that as the number of tasks

and jobs increase, the runtime of the multi-job approach

increases to more than a minute. This is because as the

workload size increased, more resources were required to

meet the increased workload demand. Consequently, the

1http://www.gurobi.com

2000 4000 6000 8000
Number of tasks

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute

Multi Single

(a) Varying number of tasks

2 4 6 8 10 12
Number of jobs

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute

Multi Single

(b) Varying number of jobs

2 4 6 8 10
Number of instance types

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute
Multi Single

(c) Varying number of instance types

200 400 600 800 1000 1400
Average deadlines

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute
Multi Single

(d) Varying job deadlines

Figure 1: Runtime of multi-job and single-job submission

approaches

multi-job approach needs to traverse through a larger search

space than the single job approach requiring more time.

Hence, the multi-job approach may not be ideal if a fast

scheduling decision is required given a large workload.

Occasionally, the multi-job approach was able to find a

solution faster when a workload increased (refer Figure 1a).

We believe this is because the Gurobi solver was able to find

122

a quick path to traverse the search space and find a solution.

However, the general trend is that the solving time increases

as the workload increases.

The number of instance types did not noticeably affect the

runtime of both approaches as shown in Figure 1c. This can

be explained as the Gurobi solver found a subset of the most

cost effective instances, thereby reducing the search space

without requiring to consider all possible instance types.

Figure 1d shows that as the deadline for a job was

increased (minimising the urgency to be completed) the

runtime of the approaches decreased. This is because fewer

instances were required when a deadline was increased since

more tasks could be assigned to an instance. Consequently,

the search space is smaller, thus reduced runtimes.

2) Comparing Cost: Figure 2 shows cost saving that can

be achieved by using the multi-job approach in comparison

to the single-job approach. It is inferred that the multi-

job approach was a cheaper solution most of the time and

achieves savings up to 6%. This is because the multi-job

approach found the resources suited for all the jobs which

was a global optimal. On the other hand, the single job

approach found the best set of instances for one job at a time

which was a local optimal. However, there were a few cases

in which the multi-job approach offered no cost savings as

both approaches provided the same scheduling decision.

B. Amazon Cloud-based Experiments

1) Experimental Setup: Experiments were performed on

the Amazon Web Service (AWS) cloud to compare the

proposed approaches on real-world applications in order

to evaluate both submission handling and dynamic reas-

signment. For the experiments reported in this paper three

instances shown in Table I were selected.

Three real-world applications with different workload

characteristics were employed. The first is a Molecular Dy-

namics Simulation (MDS) of a 250 particle system in which

the trajectory of the particles and the forces they exert are

solved using a system of differential equations [14]. MDS is

embarrassingly parallel and CPU intensive. The second one

uses SVM light2 to classify data sets provided as input files

ranging from 100MB to 500MB. This application only uses

one core on a machine. The third one uses lbzip23, a parallel

compression utility, to compress files ranging from 500MB
to 1GB. It supports multiple CPU cores which communicate

with each other.

Prior to the experiment, a sampling process to generate

the average task execution time of all applications on the

instance types was performed as shown in Figure 3. The

results indicate that MDS benefited from parallel execution;

increasing the number of CPU cores resulted in significant

performance improvement. The communication overhead

2http://svmlight.joachims.org/
3http://lbzip2.org/

2000 4000 6000 8000

0
4

8

Number of tasks

Co
st

Sa
vin

g (
%

)

(a) Varying number of tasks

2 4 6 8 10 12

0
4

8

Number of jobs

Co
st

Sa
vin

g (
%

)

(b) Varying number of jobs

2 4 6 8 10

0
4

8

Number of instance types

Co
st

Sa
vin

g (
%

)
(c) Varying number of instance types

200 400 600 800 1000 1400

0
4

8

Average deadlines

Co
st

Sa
vin

g (
%

)

(d) Varying deadlines

Figure 2: Cost comparison of multi-job and single-job ap-

proaches

Table I: AWS Instance Types

Name vCPU ECU Mem Storage Price
m3.medium 1 3 3.75 4 $0.073
m3.large 2 6.5 7.5 32 $0.146
m3.xlarge 4 13 15 80 $0.293

between the parallel cores in lbzip2 degrades performance.

There is minimal gain for SVM light since it relies on

sequential execution.

2) Evaluated Approaches: The following approaches

were evaluated: (i) single-job resource selection with (sin-
gle.dyna) and without (single.nodyna) dynamic reassign-

ment, (ii) multi-job resource selection with (multi.dyna) and

without (multi.nodyna) dynamic reassignment.

The proposed approaches were compared to commonly

used approaches that only use one instance type to create a

homogeneous cloud VM cluster. As mentioned earlier, nj,it

is the number of tasks of job j that one instance of type it

123

0
10

30
50

Ru
ntim

es
(se

con
ds)

Medium Large XLargeMedium Large XLargeMedium Large XLarge

MDS
SVMlight
lbzip2

Figure 3: Task execution time

can execute before a deadline. Hence, the number of VM of

it required to execute all tasks of j is
nj

nj,it
.

In total, there are 6 different homogeneous approaches

resulting from 3 instance types and the support for dynamic

reassignment: medium.dyna, medium.nodyna, large.dyna,
large.nodyna, xlarge.dyna, and xlarge.nodyna.

The jobs were submitted in two batches. The first batch

was submitted at the beginning of the experiment, compris-

ing 3 jobs corresponding to each application, and each job

consisted of 100 tasks requiring to meet a deadline of 1200

seconds. The second batch also had 3 jobs, each of which

had the same deadlines as the former batch but had 150

tasks, was submitted 300 seconds after experiment started.

Finally, based on the sampling experiment, the booting time

β, was set to 100 seconds.

3) Cost Comparison: Figure 4 shows the total cost in-

curred from using different approaches. In general, using

heterogeneous cloud VM clusters achieved lower cost in

comparison to use homogeneous ones. The cost saving

ranges from 4% to 31%. The multi-job approach found a

cheaper solution ($1.606) in comparison to the single-job

approach ($1.679).

To
ta

l C
os

t (
$)

0.0
0.5
1.0
1.5
2.0
2.5

m3.medium
m3.large
m3.xlarge

1.971 1.752
2.344

1.679 1.606

Med
ium Lar

ge
XLa

rge Sin
gle Mul

ti

Figure 4: Cost incurred for each approaches

Both approaches did not employ instances of m3.xlarge

type. The single-job approach tended to use more instances

of m3.medium type and fewer instances of m3.large type

(5 m3.medium and 4 m3.large instances) compared to the

multi-job approach (6 m3.medium and 8 m3.large instances).

Figure 5 shows the assignment ratio between jobs and

instance types, which is the amount of workload of the job

SINGLE MULTI

0

25

50

75

100

COMPR MOLEC SVM COMPR MOLEC SVM
Applications

As
si

gn
m

en
t R

at
io

Instance Types
m3.large

m3.medium

Figure 5: Assignment ratio of applications on instances

assigned to each instance type. For instance, the single-job

resource selection approach assigned all tasks of SVM light

and lbzip2 to m3.medium instances and MDS to m3.large

instances. The reason is that only one job at a time was

considered and the most cost effective instance type for

executing each job was selected. On the other hand, the

multi-job resource selection approach distributed a signifi-

cant proportion of lbzip2 and MDS and some of SVM light

workload to m3.large instances. Here all jobs were taken

into account and the combination of resources most cost

effective for all jobs were selected.

Figure 6: Deadline violation of the four approaches

4) Violation Comparison: In this research, we measure

violation as (i) the number of tasks finishing after their job

deadlines and (ii) the delay of all job executions, which is the

difference in seconds between the finish times of violating

jobs and their deadlines.

Figure 6 presents the violation of all approaches for the

batch of jobs considered in the above section. In is evident

that dynamic reassignment greatly reduces the violation for

all approaches. In fact, there was only one case in which

violation happened in the homogeneous cluster of medium

VMs. However, the violation time was 23 seconds, which

was 95% lower compared to 438 seconds when dynamic

reassignment was not used.

Without dynamic reassignment, the multi-job resource

selection approach resulted in lower execution time when

124

compared to the single-job resource selection approach. This

can be explained by Figure 7 highlighting the average total

execution time (from when the first job is submitted until

the finish time of the last job) of each approach. Using the

multi-job resource selection approach resulted in lower total

execution time in comparison to the single-job approach

thereby reducing the chances of violation.

14
00

14
50

15
00

15
50

Av
er

ag
e

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

single.nodyna multi.nodyna single.dyna multi.dyna

Figure 7: Total execution time using the four approaches

VII. CONCLUSIONS AND FUTURE WORK

This paper aimed to address the problem of cost-

effectively building a heterogeneous cloud VM cluster to

execute BoT jobs within a user specified deadline. Two

approaches were proposed for handling multiple and single

jobs. In the first approach, all jobs were taken into account

for deriving a scheduling decision. In the second approach,

one job was considered at a time and scheduled onto a

cloud instance. Experimental studies evaluating the two

approaches highlighted that the multi-job approach reduced

both the total monetary cost and the overall execution time

by up to 6%. The single job approach managed to take less

than one second for making a scheduling decision for all

submitted jobs. The single-job approach is suitable for a

system that handles a large workload while the multi-job

approach can maximise cost savings on the cloud. When

compared to naive approaches the proposed approach is

able to achieve cost savings from 4% to 31%. A dynamic

re-assignment mechanism was proposed and developed to

handle unexpected delays during the execution of the BoT

application. Our evaluation highlighted that violation of

deadlines was greatly reduced using the proposed mecha-

nism. In the worst case scenario, using dynamic reassign-

ment the approach reduced deadline violation by 95% and

no deadlines were violated in the best case.

In the future, we will investigate how additional instances

can be added to the cluster during dynamic re-assignment

in order to completely resolve potential violation. The effect

of the order of jobs in scheduling will be investigated.

ACKNOWLEDGMENT

This research was supported by an Amazon Web Services

Education Research grant.

REFERENCES

[1] A. Iosup and D. Epema, “Grid Computing Workloads,” IEEE
Internet Computing, vol. 15, no. 2, 2011.

[2] A. Goder, A. Spiridonov, and Y. Wang, “Bistro: Scheduling
Data-Parallel Jobs Against Live Production Systems,” in
USENIX Annual Technical Conference, 2015.

[3] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca, “Jockey: Guaranteed Job Latency in Data Parallel
Clusters,” in Proceedings of the ACM European Conference
on Computer Systems, 2012.

[4] R. Duan, R. Prodan, and X. Li, “Multi-Objective Game
Theoretic Scheduling of Bag-of-Tasks Workflows on Hybrid
Clouds,” IEEE Transactions on Cloud Computing, vol. 2,
no. 1, 2014.

[5] M. R. H. Farahabady, Y. C. Lee, and A. Y. Zomaya, “Pareto-
Optimal Cloud Bursting,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 10, 2014.

[6] L. Thai, B. Varghese, and A. Barker, “Executing Bag of
Distributed Tasks on the Cloud: Investigating the Trade-Offs
between Performance and Cost,” in IEEE Conference on
Cloud Computing Technology and Science, 2014.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-Scaling with
Deadline and Budget Constraints,” in IEEE/ACM Interna-
tional Conference on Grid Computing, 2010.

[8] L. Thai, B. Varghese, and A. Barker, “Task Scheduling on
the Cloud with Hard Constraints,” in IEEE World Congress
on Services, 2015.

[9] A. Oprescu and T. Kielmann, “Bag-of-Tasks Scheduling
under Budget Constraints,” in IEEE International Conference
on Cloud Computing Technology and Science, 2010.

[10] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove,
“Online Cost-efficient Scheduling of Deadline-constrained
Workloads on Hybrid Clouds,” Future Generation Computer
Systems, vol. 29, no. 4, 2013.

[11] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot, or
Both: Dynamic Resource Allocation for Executing Batch Jobs
in the Cloud,” in International Conference on Autonomic
Computing, 2014.

[12] L. Thai, B. Varghese, and A. Barker, “Minimising the Exe-
cution of Unknown Bag-of-Task Jobs with Deadlines on the
Cloud,” in ACM International Workshop on Data-Intensive
Distributed Computing.

[13] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: Scalable and Coordinated
Scheduling for Cloud-Scale Computing,” in USENIX Sym-
posium on Operating Systems Design and Implementation,
2014.

[14] K. Bowers, E. Chow, H. Xu, R. Dror, M. Eastwood,
B. Gregersen, J. Klepeis, I. Kolossvary, M. Moraes, F. Sacer-
doti, J. Salmon, Y. Shan, and D. Shaw, “Scalable Algorithms
for Molecular Dynamics Simulations on Commodity Clus-
ters,” in ACM/IEEE Supercomputing Conference, 2006.

125

