
Location, Location, Location: Data-Intensive Distributed Computing in the Cloud

Michael Luckeneder and Adam Barker
School of Computer Science

University of St Andrews
St Andrews, United Kingdom

Email: adam.barker@st-andrews.ac.uk

Abstract—When orchestrating highly distributed and data-
intensive Web service workflows the geographical placement
of the orchestration engine can greatly affect the overall
performance of a workflow. Orchestration engines are typically
run from within an organisations’ network, and may have to
transfer data across long geographical distances, which in turn
increases execution time and degrades the overall performance
of a workflow. In this paper we present CloudForecast: a Web
service framework and analysis tool which given a workflow
specification, computes the optimal Amazon EC2 Cloud region
to automatically deploy the orchestration engine and execute
the workflow. We use geographical distance of the workflow,
network latency and HTTP round-trip time between Amazon
Cloud regions and the workflow nodes to find a ranking of
Cloud regions. This combined set of simple metrics effectively
predicts where the workflow orchestration engine should be
deployed in order to reduce overall execution time.

We evaluate our approach by executing randomly generated
data-intensive workflows deployed on the PlanetLab platform
in order to rank Amazon EC2 Cloud regions. Our experimental
results show that our proposed optimisation strategy, depend-
ing on the particular workflow, can speed up execution time
on average by 82.25% compared to local execution. We also
show that the standard deviation of execution time is reduced
by an average of almost 65% using the optimisation strategy.

Keywords-Cloud; scientific workflows; performance evalua-
tion; topological workflow analysis

I. INTRODUCTION

Scientific workflows [2] are typically orchestrated using
a workflow engine1 running locally within an organisation’s
network. However, if the Web services in the workflow are
data-intensive and spread across many geographical regions,
the data might have to move long distances in order to
flow from the data sources to the Web services via the
orchestrator. This in turn slows down the execution of the
workflow and degrades the overall performance.

A possible solution to this problem could be to “move”
the workflow orchestrator closer to the data and the Web ser-
vices. Cloud environments provide a cost-effective platform
for scientists and engineers to execute their workflows in a
remote data centre as demonstrated by recent research [14],
[13], [18], [12], [20]. Using an Infrastructure as a Service
(IaaS) Cloud, such as an Amazon EC2 instance, it is possible
to automatically deploy the orchestrator into a suitable EC2

1e.g. http://www.taverna.org.uk

region that is “closer” to the data source and Web service
nodes; in turn data would not have to travel as far and
therefore execution times could be reduced.

The interesting problem arises when workflows consist
of a large number of Web service nodes - all of them in
different geographical regions. In these cases it is very chal-
lenging to judge where the closest and thus best-performing
Cloud region might be. Furthermore, a certain Cloud region
might be geographically closer to the Web service nodes
but, due to a high network latency on a certain network
link, using another Cloud region would actually result in a
lower execution time.

In this paper we design, implement and evaluate Cloud-
Forecast: a pre-deployment analysis tool which can dynam-
ically compute the “optimal” Cloud region to deploy the
orchestrator, given a specific workflow consisting of multiple
distributed services. We focus primarily on Directed Acyclic
Graphs (DAG) based workflows since these are heavily used
in the scientific community [5]. DAGs present a dataflow
view where data are the primarily concern, workflows are
constructed from data processing (vertices) and data trans-
port (edges). We consider different factors which could
potentially affect the suitability of choosing a certain Cloud
region: total geographical distance of workflow, network
latency and HTTP round-trip time.

We develop methods to:

• automatically deploy workflows given the topology of
the workflow and a number of fixed resource locations.

• automatically evaluate and compare the performance of
different workflow orchestration approaches.

• evaluate different factors which influence workflow
execution time.

The remainder of this paper is structured as follows: in
Section II we will outline the theoretical architecture of an
analysis tool and a suitable workflow specification model
followed by a brief discussion about the implementation.
We then explain in Section III how we built a testing
framework using PlanetLab and Amazon EC2 to evaluate
the approach and the CloudForecast tool. Finally, in Section
IV, we discuss the results of the experimentation and how
CloudForecast significantly reduced execution times.

http://www.taverna.org.uk

II. PRE-DEPLOYMENT ANALYSIS

In this section we outline the abstract architecture and a
workflow specification model. We then discuss the Cloud-
Forecast tool and a worked example demonstrating how the
optimisation is used in practice.

A. Architecture

1) Workflow Specification: In order to correctly analyse
the workflow and find the optimised Cloud region to deploy
the orchestration engine to, a workflow specification model
is required. This should specify data sources, intermediate
processing steps as well as a data sink. Since scientific
workflows are inherently graph-based, the specification lan-
guage should ideally also be graph-based so that it can
easily be interpreted by CloudForecast as well as a workflow
orchestrator. The workflow specification should also make
it computationally simple to retrieve an ordered set of
all distinct workflow nodes. This is an important feature
required by the analysis engine.

2) CloudForecast: The pre-deployment analysis tool
takes a workflow specification and builds several candidate
workflow graphs, which represent the data flow. The tool
further requires a list of Cloud regions (e.g. Amazon EC2
regions) that should be considered for workflow execution.
Every candidate graph will be based on a different one
of these Cloud regions and represent a possible optimised
workflow using the Cloud instance as the workflow orches-
trator. Every edge represents the data flowing from a Web
service node to the Cloud region or vice versa. Figure 2
illustrates a candidate graph built for the abstract workflow
described in Figure 1.

data source Web service 1 Web service 2 data sink

Figure 1. Abstract workflow example

data source Web service 1

Web service 2 data sink

workflow
orchestrator

workflow
orchestrator

workflow
orchestrator

Figure 2. Abstract candidate data flow graph

CloudForecast then gathers certain metrics for every graph
in order to determine the optimal Cloud region. A metric
value is required for every edge of the analysis tool’s graph.
Potential candidates for useful metrics include geographical
distance, network latency (as measured by the UNIX “ping”
command) and HTTP round-trip time (as measured by the
UNIX “curl” command) between every pair of adjacent
nodes.

procedure RANK(nodes, aws regions, n = 3)
dag ← build dag(nodes)
cand graphs[]← build cand(dag, aws regions)
dist[]← geo dist of each graph(cand graphs)
top graphs← top n(cand graphs, dist, n)

scores← []
for g ∈ top graphs do

scores[g] = total rtt(g)+total ping(g)
2

end for

return scores,min(scores)
end procedure

Figure 3. Ranking Algorithm. nodes is a list of web service node,
aws nodes is the list of distinct AWS regions and n is the number of
nodes to be used from the preliminary ranking (i.e. when n = 3 the top 3
geographically ranked EC2 regions are used for the final calculation.

Based on every candidate graph and metric used, Cloud-
Forecast computes an overall score. The final output is
a separate table for every metric which ranks the Cloud
regions by their predicted execution times. These tables are
purely ordinal and no actual executions times are predicted.
The pseudocode in Figure 3 illustrates the algorithm. Note
that the geographical distance is used for a preliminary
ranking and then the top n ranked regions are evaluated
using ping and HTTP RTT.

Finally, the Cloud region with the lowest overall score
should be the best region to deploy the workflow orchestrator
in order to minimise workflow execution time.

B. Realisation

CloudForecast is written in Python and is readily available
as an open source project hosted on GitHub2. The code
heavily uses the “boto”3 library to interface with the Ama-
zon EC2 APIs. To build the internal representation of the
workflow graph as well as the candidate graphs for different
Cloud regions, we implemented a Directed Acyclic Graph
(DAG) which can be traversed to calculate the sum of all
edge weights.

In the actual implementation for the experiments the
workflows are defined using concrete implementations of
an abstract Python class rather than a graph-based markup
language. This has the advantage that the workflow can be
specified using normal Python commands and one is not
restricted to using a more rigid, graph-based specification
language.

The core of the tool is an abstraction of one to many
Amazon EC2 instances in different Cloud regions. This
means that with a class instantiation and a single method
call, instances in multiple EC2 regions can be launched,

2http://github.com/bigdatalab/movingdata
3http://github.com/boto/boto

http://github.com/bigdatalab/movingdata
http://github.com/boto/boto

SSH commands can be run, and the return values can be
displayed simultaneously. Similarly, files can be transferred
via SCP into multiple instances at once.

When the CloudForecast tool is executed given a certain
workflow, the tool goes through three stages: pre-analysis,
metric gathering and analysis.

In the pre-analysis stage, it first uses the DAG implemen-
tation to create a series of graphs - one for each Amazon
EC2 region and metric (24 graphs4). These graphs are
implementations of the graph presented in Figure 2. In these
graphs, the edges correspond to the metrics that have to be
gathered. Given this information, the tool enters the metric
gathering stage.

The metric gathering stage starts with launching EC2
instances in every Cloud region and deploying the metric
script. For every edge in every graph, the metrics are re-
trieved: network latency is obtained using “ping” and HTTP
RTT using “curl”. To get geographical distances between
nodes, the ipinfodb5 API and some spherical geometry
calculations are used.

In the analysis stage, CloudForecast traverses all the
generated graphs and sums the edge weights. This will gen-
erate the Cloud region ranking tables for all three metrics.
Furthermore, the final score is calculated by averaging the
network latency and HTTP RTT metric for every Cloud
region (see Figure 3). These tables are then displayed, all
Amazon EC2 instances previously launched are terminated
and the analysis tool quits.

C. Worked Example

Here we cover a worked example of how CloudForecast
generates a deployment decision for a simple workflow.

Figure 4 shows a simple, sequential workflow with
a data source (wikimedia.org) and two workflow nodes
hosted on PlanetLab (planetlab-03.cs.princeton.edu, cs-
planetlab4.cs.surrey.sfu.ca). It takes an image from wiki-
media and then sends it to the princeton.edu node for
processing. The result from this step is then sent to the
sfu.ca node. The workflow is specified using plain Python
by providing a concrete implementation of the abstract
workflow specification class.

In addition, Figure 4 also shows the workflow in relation
to the closest Amazon EC2 Cloud regions (us-east-1, us-
west-1, us-west-2). This illustrates the dilemma faced when
deciding on the correct Cloud region to deploy the workflow
orchestrator to: which Cloud region will result in the lowest
execution time?

CloudForecast will take this workflow and build the
internal candidate graphs for every metric and Cloud region.
After all the metrics tools have terminated, the tool will have
essentially labeled all edges in the graphs. Figure 5 is an
example of what those internal graphs look like.

43 metrics × 8 regions = 24 graphs
5http://ipinfodb.com

600 miles3000

600 km3000

wikimedia.org
princeton.edu

sfu.ca

us-west-2

us-west-1

us-east-1

Figure 4. Example workflow with closest Amazon EC2 regions

wikimedia.org princeton.edu

sfu.ca

us-east-1

us-east-1 us-east-1

359 ms 49 ms

324 ms324 ms

49 ms

Figure 5. Candidate workflow graph using EC2 region us-east-1 with
network latency metric

The tool then evaluates the graphs and ranks the Cloud
regions in order of increasing execution time. Table I shows
the output of CloudForecast, an average of HTTP round-trip
time and network latency (see Figure 3).

Based on the final score rankings, we choose to deploy
the workflow orchestrator in Cloud region us-east-1.

Table I
CLOUDFORECAST RESULT OUTPUT

EC2 endpoint final score
us-east-1 92530.42
us-west-2 186251.487
us-west-1 186374.351
sa-east-1 366450.152
ap-northeast-1 421102.237
ap-northeast-2 510982.726
ap-southeast-1 532180.129
eu-west-1 500178094.532

III. PERFORMANCE ANALYSIS

In this section we describe how we analysed the perfor-
mance and correctness of our approach.

A. Experimental Setup

To verify the functionality of the CloudForecast tool, we
randomly generated and analysed a set of DAG workflows;
both simple sequential workflows and more complex parallel

http://ipinfodb.com

workflows involving multi-source and multi-sink configura-
tions. Randomly generated workflows are realistic because
usually scientists have no choice over the ordering of third-
party services as they must be used in a certain order to
execute an end-to-end distributed application. For a complete
description and graphical representation of the workflows
used in our experiments please refer to our homepage6.

In order to create a highly reusable and controlled Web
service workflow, we decided to host a simple, sequential
image processing workflow on the PlanetLab [10] frame-
work (a global research network) and other servers. The
idea is that these services can be invoked by a simple
HTTP request with an image in the HTTP request. The
Web service then executes some time-consuming image
processing (rotating it) and then returns the image in the
HTTP response.

In a typical workflow used in the experiments (e.g. Figure
4), an image is downloaded from the wikimedia servers and
then passed on to the first workflow node by the orchestrator.
The processed image is then downloaded from the first node
and sent to the second node where the same processing step
is applied, and so on.

1) PlanetLab (Test Web Services): In PlanetLab we used
a total of 6 nodes, 5 of which were in North America and 1
of which was in continental Europe7. These specific nodes
were chosen as they offered the most reliable availability
and performance to conduct the experiments. All nodes run
a Python server script which listens for HTTP requests. On
incoming HTTP requests with an image sent in the request,
the script saves the image to the filesystem, rotates the image
and then returns it in the HTTP response.

2) Amazon EC2 (Workflow orchestration and analysis):
For both the CloudForecast tool and the actual workflow
orchestrator deployment, we used t1.micro instances running
Ubuntu 12.04.1 LTS in the 8 different regions8. The compu-
tation power and storage provided by the t1.micro instances
was sufficient for the experiments as the CloudForecast tool
and the workflow orchestrator to have very small memory
footprints and small computation power requirements.

3) Random Workflows: The testing workflows were cre-
ated by randomly selecting (with replacement) a sequence
of nodes from a list of the available Web service nodes
(PlanetLab and the other servers). These workflows are
stored in plain-text files, with every line containing a single
node. All workflows use wikimedia.org as their data source.
7 workflows were generated - with 2, 3, 4, 5, 10 and 12
nodes. In order to evaluate more complex workflows, such
as multiple source patterns, two additional workflows with 7

6http://bigdata.cs.st-andrews.ac.uk/index.php/projects/#cloudforecast
7PL nodes: Carnegie Mellon University, USA; Kansas State University,

USA; Princeton University, USA; Simon Fraser University, Canada; Uni-
versity of Ljubljana, Slovenia; Williams College, USA

8EC2 Regions: North America: East & West; South America; Europe;
Asia Pacific: Sydney, Tokyo, Singapore

and 13 nodes were generated and included in the test suite.
Due to the lack of consistently available PlanetLab nodes

in South America, Africa or Asia, we focus on North
America and Europe. We generated sample workflows with
2, 3, 4, 5, 7, 10, 12 and 13 nodes.

4) The Verification Framework: In order to verify the
optimisations proposed by CloudForecast, we implemented
a very simplified, bare-bones workflow orchestrator. It re-
peatedly executes the workflow a pre-defined number of
times and returns the total execution time. The orchestrator
can easily be executed locally as well as remotely on
Amazon EC2 instances via SSH. This enables us to launch
the workflow in the predicted Cloud region as well as
from within the university network and verify if the Cloud
optimised version is faster.

IV. RESULTS

In this section we discuss the experimental results we
obtained through evaluation the previously generated work-
flows using CloudForecast.

A. General results

Table II summarises the different workflow execution
times. Every workflow was executed 5 times, on different
days and different times of day to avoid systematic errors.
For local execution, the table presents mean and standard
deviation of execution time. For the first and second-ranked
regions the table shows mean and standard deviation of
execution, mean percentage speedup compared to local
execution and the percentage decrease in standard deviation
compared to local execution.

The box plots in Figure 6(a) - 6(i) graphically illustrate
the results of Table II. We can clearly observe that the
mean execution times are greatly reduced by orchestrating
them in the highest-ranked Cloud region as opposed to
executing them locally. However, the data also shows that the
magnitude of reduction in execution time highly depends on
the workflow being analysed. Especially Figure 6(c) shows
that for this particular workflow, local execution time is very
close to the Cloud-optimised execution time.

Figure 6(j) illustrates the speedup in mean execution
time for each sample workflow due to being run in the
first-ranked Cloud region compared to local execution. The
speedups range from 3% to 188% with a mean of 82.25%.
In contrast, when the workflow is deployed in the second-
ranked Cloud region, the mean speedup from local execution
is only 21.53%. We can conclude that the analysis correctly
ranks the Cloud regions to reduce execution time.

We also note from Table II that the standard deviation of
execution is reduced by an average of almost 65% when run
in the first-ranked region. This leads to the conclusion that
the highest-ranked Cloud region as calculated by the Cloud-
Forecast tool makes execution times more stable compared
to local execution.

http://bigdata.cs.st-andrews.ac.uk/index.php/projects/#cloudforecast

Table II
WORKFLOW EXECUTION RESULTS

local execution (s) 2nd ranked (s) 2nd ranked vs local (s) 1st ranked (s) 1st ranked vs local (s)
workflow nodes data (MB) mean σ mean σ speedup ∆σ mean σ speedup ∆σ

A 2 74 124.86 36.05 110.75 40.29 13% 11.76% 48.31 0.24 159% -99.33%
B 3 111 66.10 16.45 87.81 3.77 -25% -77.08% 22.93 1.73 188% 89.48%
C 4 148 118.85 14.82 178.56 7.70 -33% -48.04% 115.74 6.02 3% -59.38%
D 5 185 339.14 64.73 288.05 25.32 18% -60.88% 276.13 19.75 23% -69.49%
E 5 185 515.30 154.85 400.45 39.70 29% -74.36 356.71 14.90 44% -90.38%
F 10 370 560.88 32.40 470.45 39.95 19% 23.30% 358.08 21.35 57% -34.10%
G 12 444 631.00 15.34 585.62 30.85 8% 101.11% 444.30 4.82 42% -68.58%
H 7 435 340.95 45.60 301.57 55.44 13% 21.58% 221.93 54.21 54% 18.88%
I 13 1220 1604.83 1029.28 635.04 39.18 153% -96.19% 591.61 101.35 171% -90.15%

MEAN 477.99 156.61 339.81 31.36 21.53% -22.09% 270.64 24.93 82.25% -64.67%

Table III
CORRECT PREDICTIONS

workflow total distance latency HTTP RTT overall
A yes yes no yes
B yes yes yes yes
C yes yes yes yes
D yes yes yes yes
E yes yes no yes
F yes yes yes yes
G yes yes yes yes
H yes yes yes yes
I yes yes no yes

B. Factors

Table II showed that the first-ranked Cloud regions were
consistently faster than the second-ranked Cloud regions.
Here, we discuss the significance of the individual metric
factors used by the CloudForecast tool to rank the data
centres.

Table III summarises whether a specific metric correctly
predicted the best performing Cloud region.

1) Geographical distance: Geographical distance seems
to give a consistent estimate of the best Cloud region to
deploy the workflow orchestrator. Based on the results of
our experiments, we can conclude that total geographical
distance of a workflow on its own is already a very good
indicator to rank Cloud regions.

However, distance analysis is static and does not take into
account unexpected network latencies on specific network
links. Thus, geographical distance should only serve as a
crude indicator to rank Cloud regions and we chose not to
include this metric in the overall score calculation.

2) Network latency: Network latency, as measured by
average ICMP ping times, also seems to be consistent
in predicting the best performing Cloud region. However,
especially when services are hosted on big server farms, the
ping might only measure latency in the Internet and not in
the network behind the gateway of the Web service.

3) HTTP round-trip time: Since network latency may
not take into account the private network and application
layer latencies, we included HTTP round-trip time as a
potential factor to rank Cloud regions. HTTP round-trip
time, as measured by a single request to the endpoint
URL using “curl”, is useful to rank Cloud regions in some
instances. There are two sample workflows, however, where
the RTT prediction was incorrect. Therefore, this metric is
only partially useful.

4) Overall ranking: Although relatively simple metrics
have been used, this combined score obtained by averaging
ping and RTT scores (see Figure 3) is a consistent indi-
cator of Cloud region performance for the specific sample
workflow. Throughout our experimentation we could not find
compelling evidence to suggest that either of the metrics was
significantly more important than the others.

C. Feasibility of analysis

Due to the implementation of the CloudForecast tool,
the metric gathering stage has to launch multiple Amazon
EC2 instances and run time-intensive metric scripts. In
our experiments, the CloudForecast tool takes an average
of about 400s to complete the analysis. Therefore, the
analysis might be infeasible for small workflows with a
small data source; however the approach is still valid for
small workflows that are going to be run multiple times in
the Cloud. Consequently, we suggest to use geographical
distance as a crude indicator to initially rank Cloud regions
and then to run the network latency and RTT analysis on the
three top ranked Cloud regions from the previous ranking.

V. RELATED WORK

This paper addresses the problem of where geographically
to deploy a workflow engine, given the specification of a
workflow consisting of highly distributed services and a set
of fixed points - in this case Amazon EC2 Cloud regions.
As far as we know there has been no prior work on the topic
of dynamically migrating workflow engines to Cloud-based
resources in order to improve performance.

local.execution second.ranked first.ranked

60
80

10
0

12
0

14
0

16
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(a) Workflow A; 2 nodes

local.execution second.ranked first.ranked

20
30

40
50

60
70

80
90

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(b) Workflow B; 3 nodes

local.execution second.ranked first.ranked

12
0

14
0

16
0

18
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(c) Workflow C; 4 nodes

●

local.execution second.ranked first.ranked

30
0

35
0

40
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(d) Workflow D; 5 nodes

local.execution second.ranked first.ranked

35
0

40
0

45
0

50
0

55
0

60
0

65
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(e) Workflow E; 5 nodes

local.execution second.ranked first.ranked

35
0

40
0

45
0

50
0

55
0

60
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(f) Workflow F; 10 nodes

local.execution second.ranked first.ranked

45
0

50
0

55
0

60
0

65
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(g) Workflow G; 12 nodes

local.execution second.ranked first.ranked

15
0

20
0

25
0

30
0

35
0

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(h) Workflow H; 7 nodes

local.execution second.ranked first.ranked

50
0

10
00

15
00

20
00

25
00

30
00

orchestrator deployment

ex
ec

ut
io

n
tim

e
(s

)

(i) Workflow I; 13 nodes

A
(2)

B
(3)

C
(4)

D
(5)

E
(5)

F
(10)

G
(12)

H
(7)

I
(13)

Percentage speedup compared to local execution

test workflows (number of nodes)

pe
rc

en
ta

ge
 s

pe
ed

up

0
50

10
0

15
0

20
0

(j) Performance gain; nodes in brackets

Figure 6. Execution times of the sample workflows

A. Decentralised Orchestration

The concept of pointers in service-oriented architec-
tures [21] allows Web services to pass data by reference
rather than by value. This has the advantage that the work-
flow orchestrator doesn’t need to handle all data passing
between the orchestrated Web services.

The Flow-based Infrastructure for Composing Au-
tonomous Services or FICAS [17] is a distributed data-flow
architecture for composing software services. Composition
of the services in the FICAS architecture is specified us-
ing the Compositional Language for Autonomous Services
(CLAS), which is essentially a sequential specification of
the relationships among collaborating services. This CLAS
program is then translated by the build-time environment
into a control sequence that can be executed by the FICAS
runtime environment.

Service Invocation Triggers [7] is an architecture for de-
centralised execution. Before execution can begin the input
workflow must be deconstructed into sequential fragments,
these fragments cannot contain loops and must be installed
at a trigger.

In previous work [4] [3] we proposed Circulate, a proxy-
based architecture based on a centralised control flow, dis-
tributed data flow model. Our prior work [6] has also focused
on decentralised service choreography models. In [8], an
architecture for decentralised orchestration of composite
Web services defined in BPEL is proposed.

All the approaches discussed in this section require either
the workflow specification or the services involved in the
workflow to be altered prior to enactment. In FICAS the
application code that is to be deployed needs to be wrapped
with a FICAS interface; in the SOA pointers and Triggers
approaches the workflow specification needs to be altered
before enactment; the IBM approach does not deal with the
problem of where to geographically deploy an orchestration
engine; Circulate like the other approaches require the
addition of an extra actor, a proxy. In contrast, our approach
enables a workflow to be analysed and then dynamically
migrated to a Cloud-based resource for execution, this avoids
the costly setup cost of wrapping back-end services.

B. Workflow Partitioning

Workflow partitioning is an approach to divide a work-
flow into several sub-workflows, which are then executed
on different sites. The most mature workflow partitioning
mechanisms are contained in Pegasus [9]: a partitioner
component decomposes an abstract workflow into smaller
sub-workflows which are then mapped onto computational
(usually Grid) resources.

Workflow partitioning can be a computationally “expen-
sive” process and is primarily useful for very large-scale
scientific workflows. We view workflow partitioning as a
complementary activity; a potential area of further research

is to use CloudForecast to schedule sub-workflows of larger-
scale workflows.

C. Third-party Data Transfers

This paper focuses primarily on optimising workflows
where services are: not equipped to handle third-party
transfers, owned and maintained by different organisations,
and cannot be altered in anyway prior to enactment. For
completeness it is important to discuss engines that support
third-party transfers between nodes in task-based workflows.

Directed Acyclic Graph Manager (DAGMan) [11] submits
jobs represented as a DAG to a Condor pool of resources.
Intermediate data are not transferred via a workflow engine,
instead they are passed directly from vertex to vertex. DAG-
Man removes the workflow bottleneck as data are transferred
directly between vertices in a the DAG. Triana [19] is an
open-source problem solving environment. It is designed to
define, process, analyse, manage, execute and monitor work-
flows. Triana can distribute sections of a workflow to remote
machines through a connected peer-to-peer network. OGSA-
DAI [15] is a middleware product that supports the exposure
of data resources on to Grids. This middleware facilitates
data streaming between local OGSA-DAI instances.

D. Data-Aware and Location-Aware Scheduling

Amazon have recently added Latency-Based Routing
(LBR) [1] to the Route 53 service. LBR provides function-
ally to reduce latency for end users by serving their requests
from the region for which the network latency is lowest.
LBR does not consider the complexities of where to deploy
an application that is constructed from a number of highly
distributed services.

Stork proposes an approach to data-aware scheduling [16]:
given an application dynamically deciding where to deploy
the data. In contrast our approach decides where to deploy
the application assuming that the data are fixed and cannot
be relocated.

VI. CONCLUSION/FUTURE WORK

This paper discussed how to increase the performance of
highly distributed Web service workflows by dynamically
deploying the workflow orchestrator on an IaaS Cloud rather
than orchestrating remote services locally. We developed
CloudForecast an analysis tool which, using the factors
geographical distance, network latency and HTTP round-
trip time, can analyse a given workflow and rank Amazon
EC2 Cloud regions.

We ran several randomly generated workflows and found
that orchestrating workflows in the Cloud significantly re-
duced execution time as well as the standard deviation of
execution time. Overall, we concluded that geographical
distance, network latency and HTTP RTT off the workflow
correctly predict the best performing Cloud region to deploy
the orchestrator.

Our proposed approach addresses the bottlenecks asso-
ciated with executing highly distributed and data-intensive
applications in the Cloud. The techniques discussed are
general and can be applied to any workflow specification
language and set of execution resources, e.g., we could easily
add further IaaS nodes such as those provided by Rackspace.

Future work could potentially look at factors other than
execution time. Using a Cloud cost forecasting system and
different Cloud providers, the analysis could be extended to
find the best Cloud region that minimises both total cost and
execution time. Furthermore, issues such as the load of the
web service nodes have not been considered in this paper
and would make an interesting extension, as would adding
throughput to the list of factors.

REFERENCES

[1] AWS. http://aws.amazon.com/route53/.

[2] A. Barker and J. van Hemert. Scientific Workflow: A Survey
and Research Directions. In R. Wyrzykowski and et al., edi-
tors, Seventh International Conference on Parallel Processing
and Applied Mathematics, Revised Selected Papers, volume
4967 of LNCS, pages 746–753. Springer, 2008.

[3] A. Barker, J. B. Weissman, and J. van Hemert. Eliminating
the Middle Man: Peer-to-Peer Dataflow. In HPDC ’08:
Proceedings of the 17th International Symposium on High
Performance Distributed Computing, pages 55–64. ACM,
2008.

[4] A. Barker, J. B. Weissman, and J. van Hemert. Orchestrating
Data-Centric Workflows. In The 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid),
pages 210–217. IEEE Computer Society, 2008.

[5] A. Barker, J. B. Weissman, and J. I. van Hemert. Reducing
Data Transfer in Service-Oriented Architectures: The Circu-
late Approach. IEEE Transactions on Services Computing,
5(3):437–449, 2012.

[6] P. Besana, V. Patkar, A. Barker, D. Robertson, and
D. Glasspool. Sharing Choreographies in Openknowledge:
A Novel Approach to Interoperability. Journal of Software,
4(8):833–842, 2009.

[7] W. Binder, I. Constantinescu, and B. Faltings. Decentralized
Ochestration of Composite Web Services. In Proccedings
of the International Conference on Web Services, ICWS’06,
pages 869–876. IEEE Computer Society, 2006.

[8] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda.
Decentralized Orchestration of Composite Web Services. In
Proceedings of the 13th international World Wide Web con-
ference on Alternate track papers & posters, pages 134–143.
ACM, 2004.

[9] W. Chen and E. Deelman. Partitioning and Scheduling
Workflows Across Multiple Sites With Storage Constraints.
In Proceedings of the 9th international conference on Par-
allel Processing and Applied Mathematics - Volume Part II,
PPAM’11, pages 11–20, Berlin, Heidelberg, 2012. Springer-
Verlag.

[10] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an overlay
testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3–12, July 2003.

[11] Condor Team. www.cs.wisc.edu/condor/dagman.

[12] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good.
The Cost of Doing Science on the Cloud: The Montage
Example. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC ’08, pages 50:1–50:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[13] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good. On the use of cloud computing
for scientific workflows. In eScience, 2008. eScience ’08.
IEEE Fourth International Conference on, pages 640 –645,
dec. 2008.

[14] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman,
B. Berman, and P. Maechling. Scientific Workflow Appli-
cations on Amazon EC2. In E-Science Workshops, 2009 5th
IEEE International Conference on, pages 59 –66, dec. 2009.

[15] K. Karasavvas, M. Antonioletti, M. Atkinson, N. C.
Hong, T. Sugden, A. Hume, M. Jackson, A. Krause, and
C. Palansuriya. Introduction to OGSA-DAI Services. In
LNCS, volume 3458, pages 1–12, 2005.

[16] T. Kosar and M. Balman. A new paradigm: Data-aware
scheduling in grid computing. Future Generation Computer
Systems, 25(4):406 – 413, 2009.

[17] D. Liu, K. H. Law, and G. Wiederhold. Data-flow Distribution
in FICAS Service Composition Infrastructure. In Proceed-
ings of the 15th International Conference on Parallel and
Distributed Computing Systems, 2002.

[18] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska, and
A. Szalay. Building the Trident Scientific Workflow Work-
bench for Data Management in the Cloud. In Advanced
Engineering Computing and Applications in Sciences, 2009.
ADVCOMP ’09. Third International Conference on, pages 41
–50, oct. 2009.

[19] I. Taylor, M. Shields, I. Wang, and R. Philp. Distributed P2P
Computing within Triana: A Galaxy Visualization Test Case.
In 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), pages 16–27. IEEE Computer
Society, 2003.

[20] C. Vecchiola, S. Pandey, and R. Buyya. High-Performance
Cloud Computing: A View of Scientific Applications. In
Pervasive Systems, Algorithms, and Networks (ISPAN), 2009
10th International Symposium on, pages 4 –16, dec. 2009.

[21] M. Wieland, K. Gorlach, D. Schumm, and F. Leymann. To-
wards Reference Passing in Web Service and Workflow-Based
Applications. In Enterprise Distributed Object Computing
Conference, 2009. EDOC ’09. IEEE International, pages 109
–118, 2009.

	Introduction
	Pre-Deployment Analysis
	Architecture
	Workflow Specification
	CloudForecast

	Realisation
	Worked Example

	Performance Analysis
	Experimental Setup
	PlanetLab (Test Web Services)
	Amazon EC2 (Workflow orchestration and analysis)
	Random Workflows
	The Verification Framework

	Results
	General results
	Factors
	Geographical distance
	Network latency
	HTTP round-trip time
	Overall ranking

	Feasibility of analysis

	Related work
	Decentralised Orchestration
	Workflow Partitioning
	Third-party Data Transfers
	Data-Aware and Location-Aware Scheduling

	Conclusion/Future Work
	References

