Flexible Service Composition

Adam Barker! and Robert G. Mann?

! Centre for Intelligent Systems and their Applications (CISA)
School of Informatics, University of Edinburgh, UK
Email: a.d.barker@ed.ac.uk
2 Institute for Astronomy, University of Edinburgh, UK

Abstract. Both the agent and Grid communities develop concepts for
distributed computing, however they do so with different motivations.
This paper demonstrates how the flexible coordination technique of in-
teraction protocols, from the field of multiagent communication, can be
used to model the processes found in scientific workflow, a typical compo-
sition problem faced by the Grid community. Our approach is founded on
the adaptation of the MultiAgent Protocol (MAP) language to perform
web service composition. A definition of the language and framework
is presented in order to solve a detailed scientific workflow, taken from
the field of time-domain astronomy. MAP offers a flexible, adaptable
approach, allowing the typical features and requirements of a scientific
workflow, to be understood in terms of pure coordination and executed
in an agent-based, decentralised, peer-to-peer architecture.

1 Introduction

Scientists are increasingly sharing their data and computational resources, as a
direct result of this, new knowledge is acquired from analysing existing data,;
which would not have been previously so readily available. This information ex-
plosion has helped to shape new multi-disciplinary fields such as bio-informatics,
geo-informatics and neuro-informatics [10]. The term ‘Grid’ refers to the infras-
tructure that builds on today’s Internet and Web to enable and exploit large-
scale sharing of resources within distributed, often loosely coordinated groups,
commonly termed Virtual Organisations [4]. The Grid is the machinery which
enables e-Science. Grid computing has attracted a great deal of interest and
funding firstly from the computer science community, but also from the applica-
tion of this computing research to problems in the engineering and the physical
sciences.

Both the agent and Grid communities develop concepts for distributed com-
puting, however they do so from differing points of view. The agent community’s
focus lies with creating autonomous, flexible software components. Agents are
designed to operate in dynamic and uncertain environments, making decisions at
run-time. Communities of agents exhibit flexible cooperation and coordination
through techniques such argumentation and social laws. The Grid community
however, has focused on the development of middleware, which provides reli-
able, scalable and secure access to distributed resources. It is clear that these

two communities of research are starting to see a convergence of interests. The
typical features of each community are illustrated by figure 1. In practise how-
ever, the application of techniques from the multiagent systems community to
the Grid is a relatively new research area, as highlighted in [7]. Although the
field is starting to see an increased level of interest, demonstrated by the recent
series of workshops [3], [2] and new journal publication [9].

Flexible Reliable

Secure

Autonomous
Cooperation,
Negotiation
Run-Time
Decisions
Uncertain
Environments

Scaleable

Agents

Middleware
Support

Working Systems

Fig. 1. A Convergence of Interests

The research presented in this paper addresses the problem of composing
multiple services to form an e-Science experiment, or workflow [8]. There are
a plethora of organisations creating Business Process Modelling languages. The
current front runner is BPEL (Business Process Execution Language) [1] for
web services, but there are many competing standards which occupy the same
space [16]. Although scientific and business workflows have an overlapping set
of requirements, it is also true that they each have their own domain specific
requirements, and therefore need consideration separately. There are however,
very few languages which deal with the flexible knowledge acquisition and dis-
covery processes found in the sciences. Kepler [5], ICENI [11] and myGrid [14]
are the current state of the art in scientific workflow composition, all using a
dataflow modelling paradigm in order to capture the series of steps required to
describe a distributed e-Science experiment.

This paper aims to demonstrate how the flexible coordination technique of
interaction protocols, from the field of multiagent communication, can be used to
model the processes found in scientific workflow, a problem from the Grid com-
munity. Allowing the typical features and requirements of a scientific workflow,
to be understood in terms of pure coordination and executed in an agent-based,
decentralised, peer-to-peer architecture.

The remainder of this paper is structured as follows. Sections 2 and 3 in-
troduce a motivating scientific workflow, taken from the Large Synoptic Survey

Telescope (LSST). This scenario demonstrates the need for of agent-based tech-
niques, as the systems which perform this computation need to be reactive,
collaborative and flexible systems. In section 4 a proposed framework and in-
teraction protocol language is discussed, as a way to address the requirements
laid down by the scenario. This language and framework is then applied to the
motivating scenario in section 5, demonstrating the use of interaction protocols
to model scientific workflow. Conclusions and current implementation work are
then discussed in section 6.

2 Virtual Observatory Technology

Breakthroughs in telescope, detector, and computer technology allow astronomi-
cal instruments to produce terabytes of images and catalogs; astronomy is facing
a data explosion. The data sets produced cover the sky in multiple band widths,
from gamma and X Ray, optical, infrared through to radio. With such vast
quantities of data being archived, it is becoming easier to ‘dial up’ a piece of
the sky, rather than waiting for expensive, scarce telescope time. The software
which allows the integration of astronomical resources has been slow to catch up
with the ever increasing astronomy data volumes. Virtual Observatories (VO)
are the technology frameworks which aim to fill this gap, allowing transparent
access to astronomical archives, databases, analysis tools and computational ser-
vices. Real science has already been demonstrated using VO technologies, and as
the middleware develops it will give astronomers seamless access to image and
catalogue data on remote computer networks.

2.1 Change in the Universe

Observations of change in the universe are difficult to obtain. Most change in
the universe is so slow, that it can never be directly observed, taking place over
millions of years; much like the evolutionary processes taking place on Earth.
However many of the most remarkable astronomical events occur on human, and
even daily, time scales; these changes have proven the most difficult to observe.
Current observatories are able to look very deeply at very small parts of the sky.
This small field of view means that any one observation is not likely to catch
a transient event in the act, as the observatories are always looking somewhere
else. A small field of vision means that an impractically large number of separate
observations are required to map the entire night sky. Observational facilities are
also in great demand, astronomers must apply for scarce telescope time, with the
assignment of only a few nights per year to each astronomer. This means that
with the lack of continuous observatory access and a global view, astronomers
are almost certainly missing out on what’s going on in the universe.

3 Time-Domain Astronomy Scenario

The Large Synoptic Survey Telescope (LSST) [15] has been proposed to address
many of these difficulties and open up ‘time domain’ astronomy, the telescope

will be able to tile the entire night sky over a three night period, generating
36 gigabytes of data every 30 seconds. This section introduces a motivating
scenario taken from the LSST science use cases, an influential factor behind the
development of the LSST program. The data reduction and analysis in LSST
will be done in a way unlike that of most observing programmes. The data from
each image will be analysed and new sources detected before the exposure for
the next tile is ready. This means that if anything unusual is detected, normal
observation can be interrupted, in order to follow up any new or rapidly varying
events. Other observing resources can then be queried instantly, providing a
different perspective on the event. As data is collected it will be added to all
the data previously detected from the same location of sky to create a very deep
master image.

Fig. 2. An example of a Subtracted Image

Every time a new image of the sky is obtained, the master image will be sub-
tracted from it. The result is an image which only contains the difference between
the sky at that time and its average state; in other words a picture of what has
changed, this image is known as the subtracted image. Figure 2 illustrates two
images of a cluster of galaxies, taken three weeks apart, the far right plate is the
subtracted image, revealing that a supernova has exploded in one of the galax-
ies. This subtracted image is then processed by a cluster of computers. The first
task involves computing which objects are expected to appear in the subtracted
image, given the area of sky, time of day, and the current state of knowledge
of known orbits. A query is made to the orbit catalogue, which contains data
about all known orbits. The results of this query are then cross matched with
the subtracted image, leaving only objects which cannot be classified, and hence
may be a new object discovery, or orbit. Further processing is performed, to try
and compute smaller sections of orbit, known as a tracklets. If these smaller sec-
tions of orbits can be extrapolated (by cross referencing them with observations
at earlier points in time), these new orbits, along with re-detections of known
objects are updated in the orbit catalogue. With each re-detection of a known
object, more information is provided, increasing the accuracy and further con-
straining the orbit. This process allows an accurate map of the sky to be built
up, catching transient events in the act.

3.1 An Agent-Oriented Approach

The classification process described in section 3 is for known classes of object,
but the hope is that, since LSST will provide a first attempt at time domain
astronomy, it will discover new classes of object, previously undetected. Once
the initial processing has finished, there will be some data which is left over.
This data includes objects and orbits which can’t be classified by the processing
software. Typically, most of these objects will simply be junk, but this may only
be revealed on the basis of comparison with other detections made from the
same night. The systems which attempt to classify this data need to be reactive,
collaborative, intelligent systems. On this basis, agent based techniques have
been applied to the classification problem. It is important to note that certain
details are left intentionally abstract, the moving objects scenario serves as a
motivating factor, illustrating the kinds of features that our interaction protocol
language and framework are required to model.

It is intended that agents will take over where the subtracted image pro-
cessing left off. Groups of agents form a multiagent system, working on behalf
of an observatory, in an attempt to classify whatever data is left over from the
automated processing stage. Agents are initially set up with a certain amount
of knowledge about properties of the data, and a number of statistical tests to
perform. Agents need to cooperate and coordinate with one another, hence they
are also set up with some rules about when and how to share information. Engi-
neers can focus on developing individual, intelligent agents which are specialised
in their own right. For example certain agents will have expertise on pixel failures
on the camera, others contain data and a hypothesis about a certain kind of un-
classified object. Figure 3 is an overview of the example scenario. Observatories
are defined within the dotted circle, inside each observatory is a certain amount
of local data (illustrated by databases), and a group of agents (illustrated by
the square). Web services are shown as rounded rectangles. Communication be-
tween agents is shown by arrowed solid lines, web service invocations are shown
as single arrowed dotted lines. An example interaction between a group of agents
could be viewed as the following.

Agents at observatory A are attempting to classify objects left over from the
image processing, one of the agents has located an item which cannot be classi-
fied locally. This anomaly appears on several plates of the sky on the subtracted
image, so it wasn’t present on the master image. The object and orbit classifi-
cation algorithms cannot identify the anomaly, so it could potentially be a new
species of object, or some kind of equipment failure. The agent has exhausted
the possibility of solving the problem locally and needs to compare similar ob-
servations made on the same night with distributed observatories, databases and
repositories. It wants to ask a question equivalent to ‘has anybody else found
anything strange in this particular area of sky, at time t, which could solve this
possible anomaly?’.

In order to discover which observatories can offer the required data, the con-
tract net protocol [13] is executed over a group of observatory agents known to
have possible data about the area of sky we are interested in, at time t. This is

proposals

W

f1 RS

=0

. 3. Overview of LSST Scenario

1g

F

illustrated by steps 1 to 4 of figure 3. A contract net agent (on behalf of the obser-
vatory) issues a call for participation over the set of possible observatory agents.
The call for participation contains a proposal, defining the terms of agreement.
The observatory agents then communicate within their local multiagent system
to try and reach some form of conclusion about participation, issuing either an
accept or reject message to the proposal. The set of agents who returned accept
(in this case observatories B and C) are returned to the classification agent, who
locally decides (based on some internal local knowledge and runtime conditions)
which agent to obtain the data from. Step 5 of figure 3 shows an accept-proposal
message being issued to the selected observatory (in this case B) and the re-
maining observatories are issued a reject-proposal message. It is then up to the
observatory agent to locally retrieve and process the data in accordance to the
agreed contract net proposal (step 6 of figure 3), this will involve negotiation of
agents local to observatory B and a set of external web service calls. Once this
process has finished, the data is sent back to observatory A. Here the agents can
use the evidence gathered from the distributed observatories and databases to
reach a conclusion regarding the unknown object, reporting anything to human
scientists which may require closer inspection. Agents then continue to process
the remainder of the junk data, following the same process again if an object
cannot be classified locally. The paper now proposes an Agent Coordination
Framework to address the problem of communication and web service invoca-
tion by agents in a distributed open, environment in order to solve the scenario
detailed in this section.

4 Agent Coordination Framework

Multi Agent Protocols or MAP for short is an interaction protocol [12]. An inter-
action protocol is essentially a collection of conventions which allow agents in an
open multiagent system to interact with one another. The term open multiagent
system means that any agent can take part in the interaction, regardless of their
internal implementation details; such as the language they are programmed in,
or operating system they are run on.

The work of the MAP language builds upon the foundations laid down by the
Electronic Institutions [6] framework; a popular technique for providing structure
and organisation in an open multiagent system. It is designed as a light weight
language to coordinate agents in an open multiagent system. Being lightweight
it is therefore relatively sparse in features, however more complex semantics can,
if required be layered on top of the basic MAP language. The abstract syntax
of the MAP language is shown in figure 4.

The division of agent interactions into scenes is a key concept in the MAP
language. Scenes can be thought of as a bounded space in which a group of agents
interact on a single shared task. Scenes also allow the division of a large and
complex protocol to be broken up into more manageable chunks. Scenes allow
a measure of security to be places on a protocol, allowing agents which are not
relevant to the protocol to be excluded from the scene. The most basic component

in this framework is an agent, which is defined by a unique name:n and a role:r.
The role of an agent is fixed until the end of the scene and determines which
parts of the protocol code an agent can execute. Roles allow agents to be grouped
together, many agents can share the same role, which means the agents have the
same capabilities. Roles also allow us to specify multicast communication in
MAP. For example, we can broadcast messages to all agents of a specific role.
An Agent’s behaviour is defined by a set of Methods {M}, which can option-
ally take a list of Terms as arguments ¢*). Methods are constructed from an
Operation Set op, which enforce control flow in the agent and a set of actions «,
which allow the agent to communicate and interact with a reasoning layer.

P € Protocol ==n (r{M}) " (Protocol)
M € Method ::= method(¢®)) = op (Method)
op € Operation ::= « (Action)
| op1 then ops (Sequence)
| op1 or ops (Choice)
| opi par op2 (Parallel Composition)
| waitfor opi timeout ops (Tteration)
| invoke(p™) (Recursion)
a € Action =€ (No Action)
| ¢® = p(pW) fault ¢™ (Decision Procedure)
| p(¢™) => agent(¢V), ¢?) (Send)
| p(6'") <= agent(s"), 6" (Receive)
¢ € Term =v]lalr|ec]_ (Terms)

Fig.4. MAP Abstract Syntax.

Actions «, can have side-effects and fail. Failure of actions causes backtrack-
ing of the protocol. The action set firstly consists of the decision procedure. The
decision procedure set is implemented as a set of methods, exposed as a reason-
ing web service. When an agent needs to make an internal decision, it invokes
methods on this web service; for example the logic deciding which observatory
agent to choose after the initial round of the contract net protocol. Given a list of
input Terms ¢, a procedure will invoke the required method on the reasoning
web service p, using the terms as input. If required it will produce a list of out-
put terms ¢*) (results from the procedure) which can be referenced throughout
the duration of the agents execution cycle. A procedure can raise an exception,
in which case the fault terms ¢(™ are bound to the exception parameters and
backtracking of the protocol occurs.

The remaining two actions that an agent can reference are the send and
receive actions. Interaction between the agents is performed by the exchange of
messages, defined as performatives p , ie. message types. Messages take a list of

terms as input ¢(¥). Terms are defined as either a wildcard (_) , an agent name
(a), a role type (r), a constant (c), or a variable (v). The send and receive
actions contain two arguments ¢;) and ¢(). Agents can send a message to a
specific agent (if ¢(;) contains an agent name), to any agent which is subscribed
to a particular role (if ¢(;) is a wildcard and ¢ contains a role type), or
simply send a message to any agent (if ¢(;) and ¢(2) are both wildcard types).
Message passing between agents is assumed to be reliable, non blocking, buffered
communication.

Control-flow in the protocol can be enforced in three ways. Firstly the se-
quence operator op; then ops, evaluates opy only if op; did not contain an
action that failed, otherwise it is ignored. The choice operator op; or ops, han-
dles failure in the protocol and evaluates ops only if op; contained an action
that failed. The parallel operator op; par ops, executes op; and op, in parallel.
A waitfor loop allows repetition of parts of the protocol. If any action inside
the loop body fails or the loops times out then the actions contained within the
timeout body will be executed.

4.1 Protocol Execution

The MAP language is a specification designed to be directly executed by a
group of agents. The typical process of executing a MAP interaction protocol is
illustrated by figure 5.

Fig.5. MAP Protocol Execution

Once an engineer has designed a MAP interaction protocol, each agent taking
part in the coordination must obtain a copy. This copy is stored locally to each

agent, illustrated by step 1 of figure 5. Agents are represented as a circle with
(A) inside and the interaction protocol as a grey rectangle with (P) inside. The
only requirement on an engineer designing an agent is a layer of software which
can translate and execute the steps in the protocol, and a reasoning web service
which implements the decision procedures of a particular role type. Each agent
maintains its own internal state. This internal state records which steps of the
protocol it is currently executing and any variables which may be needed for
sending/receiving messages and decision procedures.

Each agent taking part in the interaction must adopt a role, by adopting
a role the agent must reference a reasoning web service which implements all
the decision procedures required for that role type. This concept is illustrated
by step 2 on figure 5: the reasoning web services are represented as a rounded
rectangle containing (WS). This reasoning web service can be different for each
agent. Once agents have obtained a copy of the protocol and have reference to a
reasoning web service, enactment of the interaction protocol can begin. Agents
follow the protocol as a script, calling the web services if and when required.
Step 3 on figure 5 shows a pattern of interaction taking place, with the agent
in the top left invoking its web service (hashed out on the diagram). A further
pattern of interaction takes place, resulting in the agent on the bottom right
invoking a method on its reasoning web service, illustrated by step 4 of figure
5. Execution terminates when all the protocol steps have been enacted, or the
protocol fails. Failures can be classified as external failures, due to faulty web
services invocations; or internal failures, due to a badly written protocol.

5 Application of Framework to Scenario

This section further illustrates the MAP protocol language by applying it to the
motivating scenario presented in section 3. Figure 6 is a MAP protocol definition
of an agent attempting to classify some of the left over data from the subtracted
image processing. For simplicity the protocol contains just one agent definition,
the role of classification, however it interacts with agents who have adopted
the scientist, contractnet and observatory roles. Firstly it is important to
note that different types of term are represented by prefixing variable names
with $, role names with % and agent names with !

The classification protocol, shown in figure 6 implements the classification
agent process described in section 3.1 and proceeds as follows. A list of un-
classified objects ($junk) is received from a scientist agent (line 3). This list
contains pointers to objects which cannot be classified by the automated algo-
rithms discussed in the scenario. The agent then recursively traverses the list,
attempting to classify the items locally. If at any time the agent cannot clas-
sify an object, calls to distributed observatories need to be made (line 14). This
is achieved by making a request to an agent who has adopted the contract-
net (line 21) role, supplying as parameters to the message: a list of suitable
agents ($potential _agents, line 18) and a proposal ($proposal, line 19). The
contractnet agent (not described in this example) executes the contract net pro-

Yclassification{

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

method() =
waitfor
(request ($junk) <= agent($scientist, %scientist)
then invoke (localanalysis, $junk)
then invoke())
timeout (e)

method(localanalysis, $junk) =
(($head, $tail) = ExtractNext($junk)
then $result = StatTest($head)
then UpdateKnowledge ($result)
then (QueryKnowledge ($head)
then invoke(localanalysis, $tail)
or invoke(contractnetsend, $head, $tail))
or e)

method (contractnetsend, $unknown, $objects) =
$potential_agents = LookUp(%observatory, $unknown)
then $proposal = GenerateProposal($unknown)
then $cn = LookUp(Jcontractnet)
then request($potential_agents, $proposal) => agent($cn, %contractnet)
then waitfor
(response ($open_proposals) <= agent($cn, %contractnet)
then ($accept, $reject) = Evaluate($open_proposals)
then invoke(contractaccept($accept, $objects, $unknown))
par invoke(contractreject($reject, $objects)))
timeout (e)

method (contractaccept, $accept, $objects, $unknown) =
($observatory, $proposal) = ExtractProposal($accept)
then accept-proposal($proposal) => agent($observatory, %observatory)
then waitfor
(inform-result($opinion) <= agent($observatory, jobservatory)
then $combined_opinion = GenerateOpinion($opinion)
then inform($combined_opinion) => (_, %scientist)
then invoke(localanalysis, $objects))
or (inform-failure() <= agent($observatory, jobservatory)
then invoke(contractnetsend, $unknown, $objects))
timeout (e)

method(contractreject, $reject) =
($head, $tail) = ExtractNext($reject)
($observatory, $proposal) = ExtractProposal ($head)
then reject-proposal($proposal) => agent($observatory, %observatory)
then invoke(contractreject, $tail)}.

Fig. 6. LSST Agent Protocol

tocol, contacting all observatory agents in the list $potential agents. When
finished the contractnet agent returns a list of observatory agents (line 23) who
returned propose to the protocol. The list of open proposals is then evalu-
ated locally (line 24), generating a list of rejected agents: $reject and a single
suitable agent: $accept. An accept-proposal message is sent to the selected
agent. If the observatory agent completes the tasks specified in the proposal
an inform-result message is received (line 33). The data $opinion is used to
generate a combined_opinion which is forwarded to the original scientist agent;
informing a human scientist if anything unusual has occurred. A recursive call
is then made, in an attempt to classify the remaining objects (line 36). How-
ever, if the observatory agent has been unsuccessful in completing its task, an
inform-failure message is received (line 37). In this case, another attempt
must be made to find suitable data from distributed observatories (line 38).
In parallel to this task taking place, the agents who were unsuccessful in the
proposal bid are rejected by the reject-proposal message (line 44).

The classification protocol is a straight forward implementation of the re-
quired functionality of the scenario, however there are some subtle issues in the
protocol which require explanation. Role definitions can be divided up into a
set of methods, allowing protocol code to be separated into smaller, manageable
code chunks. Our protocol contains five method declarations. Protocols always
begin execution with the default method, which is shown in this example from
lines 1-6. Methods can be called by using the invoke operator, passing the nec-
essary set of Terms as parameters to the method. For example, line 4 of the role
definition shows an agent invoking the localanalysis method, using the list
of unclassified objects, stored in the variable $junk as a parameter. An empty
invoke () operation (line 5) will restart the default method when the protocol
execution has terminated, effectively restarting the agent.

Agents connect to their internal reasoning layer by making invocations to a
set of functions exposed as a reasoning web service. This set of functions imple-
ments a given role definition, so for our classification agent the web service
contains the following functions: ExtractNext, StatTest, UpdateKnowledge,
QueryKnowledge, LookUp, GenerateProposal, Evaluate, ExtractProposal
and GenerateOpinion. Line 12 shows the QueryKnowledge function being in-
voked, using the $head variable as a parameter. As discussed briefly in section
4, control flow is enforced by the sequence (then), choice (or) or parallel (par)
operators. The use of the sequence and choice operators is illustrated in the
localanalysis method. The agent extracts the head: $head and tail: $tail
of the list and attempts to classify the head of the list locally, by invoking the
StatTest function (line 10). It then proceeds to query its local knowledge based
on the updated information (line 12). If the QueryKnowledge function fails, the
or branch of the protocol is executed, invoking the contractnetsend method,
which begins to seek assistance from distributed observatory agents. However, if
the QueryKnowledge function succeeds (the agent can classify the data) a recur-
sive call invoke(localanalysis, $tail) is made, using the tail of the list as
input. If the function ExtractNext fails, meaning that the list is now empty the

second or branch will be executed, in this case the empty action: e. The parallel
operator is used in lines 25 and 26, in order to execute the contractaccept and
contractreject methods.

The semantics of message passing corresponds to non-blocking, reliable and
buffered communication. Sending a message succeeds immediately if an agent
matches the definition, and the message will be stored in a buffer on the recip-
ient. Receiving a message involves an additional unification step. The message
supplied in the protocol definition is treated as a template to be matched against
a message in the buffer. A unification of terms against the definition agent (¢(1),
$(2)) is performed, where ¢ () is matched against an agent name and ¢ o) to the
agent role. For example, in line 3 of the protocol, the agent will receive the list of
unclassified objects from any agent whose role is %scientist, and the name of
this agent will be bound to the variable $scientist, for later reference. However
in line 23, the classification agent will only receive the response from an agent
of role observatory and in particular, the agent we sent the original request to,
which is bound to the variable $cn. If the unification is successful, variables are
bound based on the content of the message. For example, $open_proposals is
stored locally upon receiving the message response ($open_proposals), shown
in line 23. This unification is particulary useful when we do not know the exact
name of the agent in question and simply want to receive a message from a
particular role type.

Sending will fail if no agent matches the supplied terms, and receiving will
fail if no message matches the template defined in the protocol. Send and re-
ceive actions complete immediately (i.e. non blocking) and do not delay the
agent. Race conditions are avoided by wrapping all receive actions in waitfor
loops. For example in line 3, the agent will continue to loop until a request
message is received. If this loop was not present the agent may fail to receive
the reply and the protocol would terminate prematurely. A further advantage
of using non blocking communication is that we can check for a number of dif-
ferent messages. Inside the waitfor loop (lines 32-39) the agent waits for either
an inform-result message, indicating the observatory agent has fulfilled the
original proposal, or an inform-failure message. The flow of the protocol is
very different, depending on which message is received. Timeouts, which have
not been used in this protocol implementation, specify what to do if a timeout
(specified by a time limit) is reached.

6 Conclusions and Further Work

This paper has demonstrated how scientific workflow, a problem from the Grid
community can be elegantly modelled with the use of interaction protocols, a
technique from the multiagent systems community. Our scenario demonstrates
a number of runtime decisions which need to be taken, highlighting why a pre-
defined static workflow cannot solve the service composition problem. Interaction
protocols offer a flexible, adaptable solution to scientific workflow modelling.

In particular, the MAP language and framework allows complex multiagent
interactions and web service invocations through the use of a relatively simple
formalism. It offers a number of advantages over the coordination techniques
used by existing projects focused at scientific workflow composition:

— Reasoning Models: The MAP approach allows the rules of interaction
to be explicitly expressed, while allowing individual agents to subscribe to
their own reasoning models. MAP protocols do not sacrifice the self interest
and autonomy of individual agents, although agents follow the protocol as
a script each agent can adopt their own personalised strategy within the
protocol. Reasoning web services can be mapped on an individual agent
basis (providing personalised behaviour) or on role type (providing generic
role behaviour). It is up to the engineer of the agent to provide the set of
methods which form this reasoning web service.

— Inter-operability: Agents built by different organisations, using different
software systems, written in different languages are able to communicate
with one another in a common language with agreed semantics. The only
requirement on an engineer wanting to build an agent that can coordinate
within an open system, is a layer of software which can translate the protocol
and a set of methods which make up the agents reasoning web service.

— Layered Structure: This model of interaction fills the gap between the low
level transport issues of an agent and its high level rational processes. This
layering removes some of the complications of designing large multiagent
systems; ultimately helping in the design process.

— Abstraction: Agents add an extra level of abstraction, acting as stubs or
proxies to the web services which are taking part in the coordination. This
means that the agents can use their rational layer to make decisions at run-
time when the web service coordination is actually taking place. Decisions
can be taken for example about: which services to call, what to do if a
particular service is down, how to react if an expected message is not received
etc. This approach offers more than ‘just coordination’, provided by most
web service composition frameworks and languages.

— Rapid Prototyping: As the protocols provide an executable specification of
the coordination, they serve as an excellent mechanism for rapidly prototyp-
ing a sequence of interaction. Protocols can be used to engineer a prototype
system from a scenario, even if the services or interaction model, or even
both are undefined at the design stage. Services can be stubbed.

— Compatibility: The coordination mechanism defined using the MAP lan-
guage is entirely external to the web services which are being coordinated.
The web services themselves need no alteration or knowledge that they are
even taking part in coordination. Therefore no modification of web services
needs to take place and the protocol does not need to be disseminated be-
tween the web services themselves.

This work forms part of an on going research and implementation process.
Many enhancements to the language are in the process of being made that make

it more suited to e-Science computation. These enhancements include: support
for large datasets through an extension of the type language; support for long-
lived computation, e.g. by allowing break-points in the protocols; database inte-
gration for better handling of experiment data; and support for the composition
of protocols into larger experiments at the scene level.

References

1.

10.

11.

12.

13.

14.

15.
. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Business Process Execution Language for Web Services Specification, Version 1.1.
Technical report, BEA Systems and IBM Corporation and Microsoft Corporation
and SAP AG and Siebel Systems, July 2002.

Smart Grid Technologies Workshop. In Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, July 2005.
Agent-Based Grid Computing Workshop. In 6th IEEE International Symposium
on Cluster Computing and the Grid, Singapore, May 2006.

The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann
Publishers, November 2004.

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, and S. Mock. Kepler:
An Extensible System for Design and Execution of Scientific Workflows. In 16th
International Conference on Scientific and Statistical Database Management, June
2004.

M. Esteva, J. Rodriguez, J. Arcos, C. Sierra, and P. Garcia. Formalising Agent
Mediated Electronic Institutions. In Catalan Congres on AI (CCIA’00), pages
29-38, 2000.

I. Foster, N. R. Jennings, and C. Kesselman. Brain meets Brawn: Why Grid and
Agents Need Each Other. In Proc. 3rd Int. Conf. on Autonomous Agents and
Multi-Agent Systems, New York, USA, 2004.

David Hollingsworth. The Workflow Reference Model. Workflow Management
Coalition, Document Number tc00-1003 edition, January 1995.

Professor Dr. Huaglory and Dr. Rainer Unland, editors. Multiagent and Grid
Systems. 10S Press.

B. Ludascher, I. Altintas, and E. Jaeger-Frank M. Jones E. Lee J. Tao Y. Zhao
C. Berkley, D. Higgins. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice € FExperience, Special Issue on Scientific
Workflows, 2005.

A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and
J. Darlington. Meaning and Behaviour in Grid Oriented Components. In Lecture
Notes in Computer Science, volume 2536, pages 100-111. Springer-Verlag Berlin
Heidelberg, 2002.

Interaction Protocol Specifications. http://www.fipa.org/repository/ips.php3.
Technical report, Foundation for Intelligent Physical Agents, 2002.

R. Smith. The Contract Net Protocol: High-level Communication and Control in
a Distributed Problem Solver. IEEE Transactions on Computers, C-29(12):1104—
1113, 1980.

Robert Stevens, Robin McEntire, Carole Goble, Mark Greenwood, Jun Zhao, Anil
Wipat, and Peter Li. ™ Grid and the Drug Discovery Process. Drug Discovery
Today: BIOSILICO, 4(2):140-148, 2004.

Large Synoptic Survey Telescope. http://www.lsst.org.

Workflow Patterns. In Distributed and Parallel Databases, pages 5-51, July 2003.

