
V-BOINC: The Virtualization of BOINC

Gary A. McGilvary⇤, Adam Barker†, Ashley Lloyd‡ and Malcolm Atkinson⇤
⇤Edinburgh Data-Intensive Research Group, School of Informatics, The University of Edinburgh

Email: gary.mcgilvary@ed.ac.uk, mpa@staffmail.ed.ac.uk
†School of Computer Science, University of St Andrews

Email: adam.barker@st-andrews.ac.uk
‡Business School, The University of Edinburgh

Email: ashley@edinburgh.ac.uk

Abstract—The Berkeley Open Infrastructure for Network
Computing (BOINC) is an open source client-server middle-
ware system created to allow projects with large computational
requirements, usually set in the scientific domain, to utilize a
technically unlimited number of volunteer machines distributed
over large physical distances. However various problems ex-
ist deploying applications over these heterogeneous machines
using BOINC: applications must be ported to each machine
architecture type, the project server must be trusted to supply
authentic applications, applications that do not regularly check-
point may lose execution progress upon volunteer machine
termination and applications that have dependencies may find
it difficult to run under BOINC.

To solve such problems we introduce virtual BOINC, or
V-BOINC, where virtual machines are used to run computa-
tions on volunteer machines. Application developers can then
compile their applications on a single architecture, check-
pointing issues are solved through virtualization API’s and
many security concerns are addressed via the virtual machine’s
sandbox environment. In this paper we focus on outlining
a unique approach on how virtualization can be introduced
into BOINC and demonstrate that V-BOINC offers acceptable
computational performance when compared to regular BOINC.
Finally we show that applications with dependencies can easily
run under V-BOINC in turn increasing the computational
potential volunteer computing offers to the general public and
project developers.

Keywords-virtualization; boinc; volunteer computing; perfor-
mance;

I. INTRODUCTION

Volunteer computing, made popular by BOINC and
SETI@Home [1] gives members of the general public
the opportunity to offer their computational resources to
distributed scientific research projects. Created in 2002,
BOINC has become the most popular volunteer computing
middleware system, where 900,000 users actively participate
in projects in the areas of medicine, physics, biology and
many more [2]. Despite its popularity, BOINC still has many
drawbacks, most of which relate to BOINC applications
running in the user space of the volunteer machine; the
portion of system memory where user processes execute.
These drawbacks are as follows:

• Project developers are required to port their application
to every target machine architecture.

• Project developers need to provide application-level
checkpointing to ensure job progress is not lost upon
host termination or failures.

• Project developers are limited to creating applications
that have no dependencies.

• Users of BOINC must trust that project servers they
attach to, will not distribute malicious or untrustworthy
applications.

These drawbacks can result in project developers taking ad-
ditional time to implement measures to solve such problems.

With virtualization, many of these issues are solved. One
only needs to port an application to a single virtual machine
architecture, host security in which the host is protected
from third party applications is inherently addressed by
the sandbox environment and system-level checkpointing is
available. Applications with dependencies can also easily
run where dependencies may be pre-installed or attached to
a virtual machine enabling application developers to deploy
more complex applications to obtain results of more value.
In this paper we present virtual BOINC, or V-BOINC that
introduces virtualization into the BOINC framework. Many
users within the volunteer community have taken advantage
of V-BOINC and information on how to do so, can be found
at [3].

The foundation of our approach relies on sending
lightweight virtual machine images to volunteer clients
allowing BOINC applications to run within the virtual ma-
chine itself rather than in the user space of the host. This is
implemented by installing a BOINC client within the virtual
machine image to fetch applications for a user specified
project. This is in addition to the BOINC client installed on
the user’s host to download the virtual machine image. Our
approach to virtualization within BOINC allows V-BOINC
to run typical BOINC projects such as SETI@Home and fu-
ture projects with applications that have dependencies. This
will in turn increase the number of potential applications
volunteer infrastructures are able to execute. The use of V-
BOINC hence aims to enable access to computations that
could not otherwise be performed enabling more science,
design and business to be done.

The rest of this paper is organized as follows: next we
give an overview of related research and then give a brief
overview of BOINC and outline the implementation of V-
BOINC in Section 3. In Section 4, we offer our evaluation
of V-BOINC specifically comparing the performance of V-
BOINC to BOINC and determining the effectiveness of our
checkpointing approach. We conclude with a summary of
our approach and results in Section 5.

II. RELATED WORK

Several other important research projects have added
virtualization to BOINC. This section reviews this research
while paying specific attention to the differences between
our own approach and others.

Ferreira et al [4] aim to provide solutions to BOINC’s
downfalls — namely porting applications to all participant
machines and security — by employing a virtualization
approach to create a BOINC middleware component, for use
with VMWare and VirtualBox, called libboincexec. Their
implementation shows the virtualization approach increases
the execution time of an application by 196 seconds for
VMWare [5] and 229 seconds for VirtualBox [6] on average,
when compared to running the same application via the
BOINC framework.

While the authors achieve good results, their implemen-
tation assumes a virtual machine image is already present
and is configured correctly on the volunteer machine and
no application dependencies exist. The authors show that in
order to run a job within the virtual machine, the application
must first be transferred to the host machine and copied
to the virtual machine. Similarly, output data must be
transferred to the BOINC server via the host machine. This
method may however introduce security weaknesses where
an application and data can be corrupted before they are
copied to the virtual machine and vice versa. Furthermore,
when an application and its data are large in size, transferring
these to the host and then the virtual machine will also
further increase the job pre-execution time significantly.

The authors implementation also breaks the BOINC pol-
icy of being transparent to the user where many changes
are required to the host due to the external dependencies
of libboincexec. Also the effects of virtual machine check-
pointing, for example the time to create a snapshot and the
storage requirements on a volunteer host are not explored;
we cover these items in the following sections.

Gonzlez et al [7] realize that running interpreted appli-
cations in BOINC (e.g R, Matlab, Java etc) is difficult
when firstly, an application has lots of dependencies and
secondly, it is not possible to send an application envi-
ronment such as Matlab to a host. Currently the BOINC
Wrapper exists allowing legacy applications to be run within
BOINC, however the authors go further and create a starter
tool that detects whether the correct environment is present
for the application to run successfully and if not, detects

missing parts and downloads them. The environment is then
deleted after the computation has finished. One problem
may however occur if URLs of packages change overtime.
The authors also realize that interpreted applications do not
have application-level checkpointing and hence introduce
virtualization via VMware Player to provide system-level
checkpointing. By using VMware Player, users of the au-
thors system will be presented with the virtual machine,
violating the BOINC policy of being transparent to the user.
In our case, VirtualBox is used allowing headless virtual
machines; virtual machines that do not display a window
at runtime. Furthermore, the authors use virtual machine
checkpointing however its effects on a volunteer host are
not explored.

Recently, BOINC offered virtual machine functionality
[8] via its vboxwrapper program that acts as an interface
between the BOINC client and VirtualBox. This program as
well as the application and its data are stored in a shared
folder between the host and guest, where the computation
is then executed. Our approach differs as virtual machine
images can be automatically downloaded to the host and
execute applications from any BOINC project. The authors
method may be useful for typical scientific BOINC appli-
cations with no dependencies, however our approach also
targets applications with dependencies where we also try
to customize and open up BOINC such that researchers
and organizations can make use of V-BOINC easily and
effectively.

Similarly, developers at LHC CERN have developed the
CernVM that runs data analyses from LHC experiments
[9]. The virtual machine image is available to run on many
hypervisors such as VirtualBox, KVM, VMware, Xen and
Hyper-V Server. The CernVM/VBoxWrapper Test Project
[10] is similar to our project where virtual machine images
can be downloaded to execute computations, however the
framework is not customizable to the point where users are
able to select the project they would like to join; only LHC
computations can be performed. Their server implementation
is also not available where V-BOINC’s is publicly available
and the V-BOINC virtual machine image size is smaller than
the CernVM reducing the transfer time between server and
client.

III. VIRTUALIZING BOINC

V-BOINC is the virtualized version of BOINC allowing
users to avoid the drawbacks of BOINC and take advantage
of virtualization. Implementing the framework requires some
additions to convert regular BOINC into V-BOINC. Namely
the V-BOINC project server distributes virtual machine
images as opposed to scientific applications and the V-
BOINC client controls not only the host’s BOINC core
client but the virtual machine and it’s inner BOINC client.
These components are relatively difficult to create and hence
they can be downloaded alongside their source code on

Table I: Virtualization Technology vs V-BOINC Requirements

Requirement QEMU/KVM VirtualBox VMWare Player
Unique IP Address Allocation 41 4 4
Headless VM 4 4 41

Image Size < 235MB (compressed) 4 4 4
Boot Time < 20s 42 4 4
Basic VM Control 4 4 41

Remote Command Execution 7 4 41

Checkpointing 4 4 4
Portability (Mac & Linux) 43 4 7
1 additional configuration and/or installation required on host
2 only when used with KVM enabled
3 KVM component not available on Mac OS X

the V-BOINC page at [3]; this paper discusses the latter
implementation.

A typical BOINC infrastructure has two major compo-
nents: the project server and the BOINC client installed on
the volunteer machine. The BOINC client is composed of
4 parts: the core client, the boinccmd interface, the BOINC
Manager and the Screensaver. The BOINC core client is
the most important component which communicates with
the server to deal with user registration, attaches clients to
projects and sets up the computation. In order to control
the BOINC core client via the command line, the boinccmd
interface can be used to issue commands such as obtaining
new tasks, suspending computations, uploading results etc.

For most BOINC users, many will interact with the
BOINC Manager which gives a GUI representation of the
command line version, giving the user an easy method to
take control of the BOINC client. Similar to the boinccmd
interface, the BOINC Manager can also set user preferences
such as storage and network restrictions — many other op-
tions exist but for brevity, are not explained here. Finally, the
Screensaver component offers a project specific screensaver
displaying graphics for a running task however whether a
screensaver exists is project dependent.

When the BOINC client is downloaded, the user must
select or enter a project to attach to. These projects reside on
‘BOINC servers’ that have the BOINC server environment
and dependencies installed; the server uses MySQL for data
storage, while Apache and PHP are used for web access (e.g
access to a user’s online account). The BOINC server has
the tasks of distributing, collecting and storing completed
jobs from many clients. Upon a user attaching to a project,
the server will handle the user registration and record what
machine type the user has in order to supply it with the
correct executable for its architecture. The computation is
setup according to user based preferences, the application
runs and the results are sent to the server which are then
validated and stored. Despite the basic appearance of the
server component, the core concepts behind this are much
more complex where several daemons execute and cooperate
with one another to provide a reliable and scalable service.

These however are out of scope of this paper. We now know
enough about the basic operation of BOINC to introduce
virtualization into the framework.

A. Virtualization Technologies

Firstly we must define the characteristics we require of
the virtualization software package. These requirements are
listed in Table 1 alongside the three most relevant virtual-
ization technologies and whether they satisfy our conditions.
The software packages chosen are QEMU/KVM, VirtualBox
and VMWare Player. Other technologies were analysed and
were either deemed to be unfit for our purposes or did not
provide enough functionality.

We require that these virtualization technologies allow
bridged networking to give the virtual machine a unique IP
address enabling the virtual machine’s inner BOINC client
to directly receive jobs and return results to the BOINC
project server. The chosen package must also adhere to the
BOINC policy of being transparent to the user, offer API’s
for basic virtual machine control (e.g. start, stop, etc) and
allow command execution on the virtual machine.

Furthermore virtual machine checkpointing must be avail-
able and the chosen package must be portable to both Linux
and Mac OS X machines; the platforms V-BOINC targets.
Future work will include Windows platforms. Finally, we
specify that the virtual machine image must boot within a
small period of time, currently under 20 seconds, and that
the size of the virtual machine image file while compressed
is less than 235 MB which is the current size of the CernVM
— the project most similar to ours.

• QEMU/KVM: QEMU is an open source virtual machine
emulator that achieves reasonable performance [11]
[12]. This performance can be increased by using the
Kernel Virtual Machine (KVM) component recently
merged into QEMU, that takes advantage of hardware-
assisted virtualization via the extensions Intel VT-
X or AMD-V [13] found on recent Linux kernels.
QEMU/KVM satisfies the majority of our requirements
however it does not offer an API for executing com-
mands upon the guest.

Furthermore, to obtain a unique IP address,
QEMU/KVM requires configuration changes and
additional installations on the host which are
unreasonable to ask a volunteer user to undertake. The
resulting virtual machine does satisfy our boot time
requirement in 11 seconds however only when the
KVM component is enabled to increase performance;
this component is not available on Mac OS X. Without
the use of KVM, the performance of the virtual
machine would decrease significantly.

• VirtualBox: is an x86 and AMD64/Intel64 open source
virtualization product developed and maintained by
Oracle that can be run on all major platforms and
supports many guest operating systems [6]. VirtualBox
does however have components based on QEMU [14]
hence it inherently satisfies the same requirements,
however in this case, VirtualBox boots up the same
image on the same host in approximately 13 seconds.
Most importantly, the major advantage of VirtualBox
is the ability to easily start the virtual machine image
with a Network Bridge Adapter via Ethernet or wireless
giving the machine a unique IP address and identity.
The VirtualBox API called VBoxManage, also simpli-
fies the task of controlling the virtual machine where
QEMU’s equivalent provides less relevant options and
remote commands can be executed upon the guest via
the guestcontrol function.

• VMWare Player: is a free virtualization package de-
veloped and maintained by VMWare, however this
is not open source like the previous packages [5].
VMWare Player satisfies all requirements apart from
being available on both Mac OSX and Linux however
allowing headless virtual machines, basic control and
remote command execution depend on whether the VIX
API is installed.

Based on the evidence shown here, with ease of use
in mind and to avoid additional installation of packages
and configuration on the volunteer host, the most suitable
candidate for use within V-BOINC is VirtualBox; V-BOINC
currently supports VirtualBox version 4.1.8 however later
versions should also work but remain untested. In the future,
V-BOINC will support the above hypervisors to increase
the user base of this volunteer computing paradigm. We
now give an overview of how V-BOINC operates and runs
computational jobs.

B. Methodology Overview
The foundation of V-BOINC relies upon five components

each shown in Figure 1:
• V-BOINC Server: A modified BOINC server distribut-

ing virtual machine images, as opposed to scientific
applications, to attached volunteer hosts.

• V-BOINC Client: A downloadable package encapsu-
lating a modified BOINC client and a GUI with the pur-

pose of communicating with the V-BOINC and BOINC
Servers as well as the host virtualization hypervisor.

• The Virtual Machine (VM): The platform the BOINC
scientific application will execute upon. The V-BOINC
virtual machine uses the Ubuntu Server 11.04 Operat-
ing System (OS) and runs upon a VirtualBox Virtual
Disk Image (VDI). A single OS is currently used for
initial deployment of the project to the volunteer user
community however we envisage an extensive variety
in the future. By default, the V-BOINC virtual machine
is set to use at most 1 GB of RAM and 1 processor.

• BOINC Server: A typical BOINC project server that
provides scientific applications to attached volunteer
hosts.

• Dependency Disks (DepDisk): A separate VDI con-
taining the application’s dependencies.

Dependencies

MPI

Host Machine

V-BOINC
Server

Virtual
Macine

1. Request VM

2. VM and Script

4. Start
VM5. Get Job

6. Executable/Data

7. Job Result

B
O
I
N
C

3. Create/
Attach

Disk, Mount
 + Setup

R

BOINC
Server

1.1. Get Disk

V-BOINC
Client

BOINC

1.1.2

Retrieve

Figure 1: V-BOINC Implementation Overview

Upon a volunteer user submitting the details of the
BOINC scientific project they wish to attach to via the
V-BOINC Client (e.g the project server URL and their
BOINC project weak account key), the host BOINC client
is instructed to request a virtual machine image (1). Con-
currently, the V-BOINC Client probes the BOINC server to
determine if any dependencies exist for the specified project
(1.1). If so, a VDI (or .vdi) file containing the dependencies
is transferred to the V-BOINC Client via curl; we assume
that developers of BOINC projects who wish to deploy
applications with dependencies are prepared to create a VDI
file containing the dependencies and make this publicly
available on the BOINC Server to allow the V-BOINC Client
to determine whether a DepDisk needs to be downloaded.

Concurrently while a DepDisk is downloading, the virtual
machine image and an executable script are downloaded to
the host BOINC client (2); both download processes must
complete before proceeding to the next step. The V-BOINC
Client either attaches the DepDisk, if the application is found
to have dependencies, or alternatively creates an empty disk
and mounts this to the virtual machine image (3). The virtual
machine image is then started (4) allowing it to request (5)
and receive (6) BOINC jobs and return job results (7).

C. Lightweight, Flexible and Robust VMs

The purpose of attaching/creating mountable DepDisks
above (1.1.2/3) is well justified for a number of reasons. As
opposed to relying on volunteer host dependencies where
packages must be present and in a specific location on a
volunteer machine; in turn limiting the number of hosts
available to a specific project due to the many different
host configurations possible; the use of mountable disks
makes it an easy and effective method for applications
with dependencies to run. Without the use of virtualization,
software packages (e.g MPI, R, Java etc) could be transferred
and utilized via regular BOINC, however one could not take
advantage of virtualization.

To reduce the bandwidth consumed by transferring V-
BOINC virtual machine images to volunteer hosts, the
virtual machines has been stripped of all unnecessary com-
ponents such as Linux swap space and unneeded packages.
As a consequence, no extra disk space exists hence why
mountable disks are required not only for adding application
dependencies but for adding disk space for applications to
consume. Where no dependencies are required, a fresh disk
is locally created on the volunteer host and mounted. In
both cases, Linux swap space is replaced to ensure the
performance of the virtual machine is not degraded. As a
result of distributing stripped virtual machines, no bandwidth
is wasted by transferring these images with unused disk
space.

To create the smallest usable virtual machine image pos-
sible, we use the VirtualBox Fixed Disk Image (FDI) type as
opposed to the Dynamic Disk Image (DDI). The former is of
fixed size and the latter has the capability to grow according
to how much is stored upon it, up to a specified maximum;
this image however does not decrease in size when items
are removed from a virtual machine. Our virtual machine
VDI uses the FDI image type for one important reason: the
size of the DDI image is difficult to control and keep as
small as possible. Also, for example, an FDI file with the
OS components installed could size at 681MB however with
the same components installed, a DDI could be 700MB. It
is important to keep the virtual machine VDI at an absolute
minimum to reduce the data transferred and stored on the
host. The current size of our virtual machine VDI is 649
MB uncompressed and 207 MB compressed.

On the other hand, DepDisks use the DDI type to mini-
mize the initial storage required on the host. For example,
when the virtual machine image is downloaded and the
DepDisk attached, the minimal storage possible is consumed
due to the combination of different disk types used. By
essentially partitioning a virtual machine over two VDI files,
we ensure that when a user attaches to another BOINC
project, a new DepDisk need only be ‘plugged’ in to the
virtual machine as opposed to downloading both a new
virtual machine image and DepDisk.

D. Taking Control

After the virtual machine image has been transferred to
the volunteer machine via the host BOINC client — an
operation that would only take 3 minutes assuming that the
current average UK bandwidth of 9Mbps [15] applies — it
must be unpacked, configured and started; a process which
is performed both by the instantiation script downloaded
in step (2) of Figure 1 and the V-BOINC Client. The
instantiation script simply:

• Decompresses the virtual machine image tar file.
• Signals the V-BOINC Client to take control of the

instantiation process.
When signalled by the instantiation script, the modified

BOINC client as part of the V-BOINC Client:
• Registers the virtual machine image with VirtualBox.
• Creates a fresh VDI or attaches a pre-created DepDisk

to the virtual machine.
• Starts the virtual machine image.
• Takes periodic snapshots once the virtual machine is

running.
• Waits for the virtual machine process to finish. This

firstly shows to the user that the virtual machine process
is still running if they use the BOINC Manager and that
any virtual machine errors are caught during execution
which can then be uploaded to the server afterwards
for debugging.

Once the virtual machine process is running, further com-
plexities are introduced as a second BOINC client located
on the virtual machine needs to be controlled from the host
to execute typical BOINC commands such as requesting
tasks and uploading results; this is performed by using the
boinccmd command line tool through the V-BOINC Client
GUI. Figure 2 shows how the V-BOINC Client GUI must
interact with both BOINC clients and the VirtualBox API.

BOINC Task

VBOINC Middleware

VBOINC Client GUI

(Modified) BOINC Core Client

Downloaded Virtual Machine

BOINC Core
Client

Resource Monitor Failure Detection

VirtualBox API

Application
Dependencies

Figure 2: V-BOINC Volunteer Host Components

The V-BOINC Client GUI provides a similar interface
to that of the BOINC Manager, offering options to control
either BOINC client’s state to either running, suspended and

halted via the boinccmd component. For example, if a user
wishes to suspend a job running on the virtual machine,
one has to use the suspend directive via the boinccmd tool
on the virtual guest. BOINC offers other command options
such as: reset, detach, update, resume, nomorework and
allowmorework. These commands must be passed to the
V-BOINC Middleware component which wraps them in a
VirtualBox API method call to the guestcontrol function and
executes them on the virtual machine; the virtual machine
has Guest Additions installed to allow this.

These commands will control a BOINC job’s execution
within the virtual machine process however controlling the
virtual machine itself is more complex as the host BOINC
client cannot (easily) control separate non-BOINC pro-
cesses. For example, the above boinccmd suspend command
would not suspend the virtual machine process if executed
locally on the host. Commands such as these must be
performed via the VirtualBox API by calling the controlvm
component. Additionally, the Middleware component also
provides resource monitoring and virtual machine failure
detection to inform the user at real time, the current state of
V-BOINC.

E. Checkpointing and Recovery
To ensure the continuity of BOINC applications, the

modified BOINC client implements periodic virtual ma-
chine checkpointing and recovery, with the interval between
snapshots chosen by the volunteer user. In the case of any
errors occurring on the volunteer host, or the host simply
terminates, the latest snapshot can be recovered and the
project developer can be reassured that the computation
will complete without the need for implementing application
checkpointing. VirtualBox makes checkpointing simple by
calling the snapshot component of the VirtualBox API.
Executing this command places the appropriate snapshot
files in the Snapshots folder where the virtual machine
image is located. The files created when checkpointing via
VirtualBox are:

• A copy of the virtual machine settings. These settings
include the hardware configuration such as the memory
allocated to the machine as well as any attached disks.

• The current state of all VDI’s attached to the virtual
machine. VirtualBox implements this by storing differ-
encing images; images which store all write operations
after a snapshot is taken.

• The current state of memory if a snapshot is taken while
the virtual machine is running. This memory state file
can be quite large — up to the memory size allocated
to the machine — and is dependent on the application
memory usage. Allocating less memory, limits the
size of the memory dump file but reduces application
performance for those dependent on memory.

To restore a snapshot, the correct differencing image is
activated and the current snapshot/virtual machine state is

deactivated. To reduce the storage space consumed on the
host, previous stale snapshots files that are not required are
deleted by V-BOINC.

IV. EXPERIMENTS AND RESULTS

We now outline the experiments performed to firstly show
the achievable resource performance of V-BOINC when
compared to regular BOINC and secondly to outline our
use case showing that the V-BOINC framework can be used
for computations requiring dependencies. Thirdly we show
what effect of periodic system-level checkpointing has on
the valuable storage space reserved for BOINC jobs and
on the BOINC job itself. All experiments were performed
on an OptiPlex 790 host with two Intel i3-2100 Core 3.10
GHz processors and 3.8 GB of memory. By default, the V-
BOINC virtual machine is set to use the hardware assisted
virtualization instruction sets VT-x/AMD-V and the default
values of using 1 GB of RAM and 1 processor are increased
to the maximum VirtualBox allows.

A. BOINC vs V-BOINC
To evaluate V-BOINC, we measured the performance of

V-BOINC when compared to regular BOINC. This was
performed by running a series of benchmarks and a use case
application and collecting their execution times.

1) Benchmark Performance: We used six benchmarks,
shown in Figure 3, each with different resource usage
demands to demonstrate the performance of a range of
workloads. Each benchmark was executed ten times and
the average of these figures was plotted. We display 95%
confidence intervals to show that in most cases, the true
mean will lie within the specified range.

Figure 3: V-BOINC Benchmark Execution Times

Primes is a CPU intensive application used to calculate
the first 300 prime numbers. Create5GB is a memory and
I/O intensive function used to create a file of 5 GB using
the Linux function dd. CPU, Memory, I/O and Disk are
modified versions of the Stress workload generator [16] to
strain each of the resources up to a specified number of
iterations. Each benchmark is then run over four different
platform configurations:

1) execution just on the Host without the use of BOINC.
2) execution on the Host using BOINC.
3) execution just on the V-BOINC virtual machine with-

out the use of V-BOINC.
4) execution on the V-BOINC virtual machine using V-

BOINC.
Figure 3 shows the executions times obtained by running

the benchmarks in each case above. Firstly we see that the
overhead of BOINC is negligible when comparing cases
(1) and (2). Secondly and most importantly, we see that
in most cases V-BOINC is slower than traditional BOINC
with the exception of the Create5GB benchmark. Thirdly we
see that the implementation of V-BOINC introduces little
overhead when comparing cases (3) and (4). This shows
that the performance difference between BOINC and V-
BOINC is introduced by virtualization alone and not the
implementation.

This slowdown is caused by many factors relating to
the virtual machine settings and hypervisor. When a virtual
machine image is registered with VirtualBox, one must
specify the memory, number of CPU’s to use as well as
a CPU execution cap, i.e only use 90% of the processor
for example. However because the virtual machine is not
able to use the full amount of memory and processing
power available to the host machine, it is predictable that V-
BOINC would perform slower; only 2.9 GB of RAM could
be allocated to the virtual machine, hence explaining why
memory intensive benchmarks perform much slower.

Our memory benchmark execution time above uses 2.5
GB of memory; approximately 66.9% and 85.2% of the total
available host and virtual machine memory respectively. If
we normalize the percentage of memory used to 66.9% for
each host, the execution time difference reduces from 190
seconds to approximately 160 seconds, showing the true
virtualization overhead. However, the remaining memory
intensive benchmark Create5GB shows that not all appli-
cations may run slower when using virtualization and this
is dependent on the internal components of the application.
We can only assume that the hypervisor’s caching strategy
is better than that of the underlying system.

Similar to the memory deficit, the processing power
available to the virtual machine is lower than the total
available to the underlying host. This is caused by the
resources used by processes running and supporting the
hypervisor on top of those running the Operating System.
Hence the performance differences between host and virtual
machine executions can be partly attributed to the maximum
settings VirtualBox allows for any particular virtual machine
but also the performance of VirtualBox itself where others
have found the performance difference much slower than
execution upon the host [4] [17] [18].

2) Case Study: SPRINT-R: To illustrate that V-BOINC
can not only execute standalone applications and to also
show the performance achieved of a real use case applica-

tion, we execute the Simple Parallel R INTerface (SPRINT)
[19], which has MPI and the statistical package R as
dependencies, on V-BOINC. SPRINT is a package providing
parallel functions of R allowing data to be analysed over
multiple processors rather than performing the computation
on a single node and was chosen as it already is in wide use
on computing clusters. The support and analysis of real users
running such applications on the V-BOINC infrastructure
will be undertaken in the near future however.

For our experiment, we used SPRINT’s pcor which is the
parallel version of the R serial function cor. As its name
may suggest, it performs correlation on a given data set;
our data set is randomly generated with 11000 genes (rows)
and 321 samples (columns). First this data must be loaded
(Load) into R and then executed (Exec). Figure 4 shows
the execution times of these operations respectively when
two SPRINT processes are spawned. Again we provide a
comparison between running the application via a variety of
configurations, i.e Host, BOINC, VM and V-BOINC.

Figure 4: SPRINT Data Load and Execution Times

Figure 4 depicts three results similar to those outlined in
Figure 3. Firstly that running SPRINT on BOINC shows
little or no overhead when compared to running SPRINT
on the host itself. Secondly, the overhead of the V-BOINC
implementation is also minimal where little difference can be
seen when running SPRINT via the cases (3) and (4) above.
Thirdly and most importantly, we see the performance
difference between V-BOINC and regular BOINC, with the
overhead of virtualization causing the time for loading and
execution to approximately double and triple respectively
in these cases; a fact that must be accepted when using
virtualization to solve other problems.

B. The Effect of Checkpointing

To enable BOINC project developers to omit application-
level checkpointing from their code, V-BOINC provides
periodic checkpoints. However, because the storage space
BOINC is permitted to use is potentially limited by the
volunteer specified preferences, this makes it extremely
valuable. To determine the likely storage space consumed

Table II: Snapshot Files and Times per Benchmark

Benchmark Snapshot Time (s) Memory Size (MB) DepDisk Snapshot Size (KB) VM Snapshot Size (KB)
CPU 1.1779 86.9 36 8
Memory 1.7142 56.76 36 8
I/O 0.9425 43.57 36 8
Disk 24.6023 1126.4 54374.4 8
Primes 1.2153 98.1 36 8
SPRINT 31.4665 2334.72 36 8

by our system-level checkpointing approach, we executed a
series of benchmarks representing different workloads while
taking per one minute checkpoints over a ten minute period
and recording the storage space consumed. Table 2 shows
the average values obtained for the time taken to perform
a snapshot, the size of memory dump file and the actual
snapshot VDI sizes of the DepDisk and virtual machine. The
runs were performed using the V-BOINC virtual machine
with an attached 8 GB DDI DepDisk containing experiment
files and the necessary dependencies for SPRINT.

Firstly, we see that in four of the six resource intensive
benchmarks (CPU, Memory, I/O and Primes), the average
snapshot time is minimal at approximately 1 second. In
these cases, we also see that the memory dump file size
is lower than 100 MB and that the snapshot VDI sizes of
the DepDisk and virtual machine also remain small at 36
KB and 8 KB respectively; the lowest possible snapshot
sizes for these two disks. This shows that the DepDisk or
VM VDIs are not written to during execution, where only
CPU, memory and I/O resources were used. The remaining
Disk and SPRINT benchmarks show different results where
snapshot times and memory dump file sizes are larger. This
is caused by a large amount of memory consumed in both
cases and a large amount of writes to disk in the former.
In these cases, the largest memory dump file recorded was
2.28 GB using SPRINT and 1.1 GB using the Disk-intensive
benchmark; this benchmark also has the largest DepDisk
snapshot VDI size of approximately 53 MB.

These results show that applications that do not write to
disk or perform lots of memory operations (e.g cache writes
etc) are unlikely to consume large amounts of storage space
on the volunteer host when periodic snapshots are taken.
However applications which intensively perform memory
or disk operations are likely to produce larger memory
dump and snapshot files. This is reassuring as typically
BOINC applications tend to be CPU intensive operating
over little data (e.g SETI@Home uses about 10MB per host
[20]) hence the checkpointing process should be quick and
consume very little storage space.

C. A Note on Server Performance
Similar to the performance degradation caused by virtu-

alization on the volunteer host, we expect the performance
of the V-BOINC server to be less than that of a regular
BOINC project server deployed on the same host. Previous

research shows that a BOINC server hosted on a single
inexpensive computer can distribute up to 8.8 million tasks
per day with the CPU and network bandwidth being the main
bottlenecks [21]. In the case of V-BOINC, we expect that
the number of tasks per day the server can distribute will be
significantly lower than that of a regular BOINC server, with
the network bandwidth being the major bottleneck when
volunteer BOINC clients request a virtual machine image
to be downloaded on their machine.

To alleviate this problem, BOINC server administrators
currently solve CPU and network bottlenecks by replicating
a server across a larger number of machines. Dependent on
the popularity of V-BOINC, we may employ this replication
mechanism over multiple Amazon EC2 regions to reduce the
distance between volunteer user and a V-BOINC server. Fur-
thermore, BOINC clients are designed to employ exponential
back off of requests to the server, hence the V-BOINC server
should rarely receive a large number of requests that cause
it to experience failures due to CPU and network bandwidth
bottlenecks.

V. CONCLUSIONS AND FUTURE WORK

V-BOINC is a tool providing solutions to the drawbacks of
regular BOINC by allowing project developers to port their
application only to the V-BOINC virtual machine and omit
application-level checkpointing from their code. Developers
with applications that have dependencies can easily utilize
V-BOINC where users of regular BOINC cannot (easily)
run such applications. Finally end user worries relating to
security and untrustworthy applications are also solved via
the sandbox nature of virtual machines. Note that V-BOINC
does not currently deal with providing correct credit to
BOINC users nor does it accurately adhere to user based
preferences; these features as well as advanced resource
monitoring and failure detection will be present in future
versions of V-BOINC.

One will find that the design and implementation of V-
BOINC plays a major role on how regular BOINC applica-
tions and those with dependencies can easily be run upon
V-BOINC. In the former case, our inner virtual machine
BOINC client allows regular BOINC applications to be run
in the virtual presence without modification and furthermore,
four stage transfers between the virtual machine and host
do not occur as implemented in other research [4] [14].
In the latter case, the attachable disk mechanism allows

dependencies to be mounted automatically and snapshots of
this disk can be taken and restored upon virtual machine
termination or failures.

We have also shown how the performance of V-BOINC
compares to regular BOINC and how the implementation
of V-BOINC introduces a negligible overhead. As expected
the performance of regular BOINC is better than that of
V-BOINC’s due to the virtual machine overhead, however
the actual overhead caused by the implementation of V-
BOINC is negligible when compared to running the same
application on a standalone virtual machine. However one
must weigh up the advantages of V-BOINC compared to the
increased performance of traditional BOINC and whether
the performance cost from virtualization is acceptable for
volunteer computing. Investigating this with real volunteer
users, application communities and different hypervisors
such as QEMU/KVM and VWWare Player is worthy of
extensive future investigation.

V-BOINC will continue to be optimized and developed to
include the omitted features mentioned and is motivated by
the fact that many users have downloaded the framework.
For those who wish to test V-BOINC, our server and client
components as well as links to our project documentation
and online Amazon EC2 service can be found at [3].

REFERENCES

[1] D. P. Anderson, “Boinc: A system for public-resource com-
puting and storage,” in 5th IEEE/ACM International Work-
shop on Grid Computing, 2004, pp. 4–10.

[2] ——, “Volunteer computing: the ultimate cloud,” Crossroads,
vol. 16, no. 3, pp. 7–10, Mar. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1734160.1734164

[3] “V-boinc information,” http://garymcgilvary.co.uk
/vboinc.html.

[4] D. Ferreira, F. Araujo, and P. Domingues, “libboincexec: A
generic virtualization approach for the boinc middleware,”
in Proceedings of the 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and PhD
Forum, ser. IPDPSW ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 1903–1908. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2011.349

[5] “Vmware player website,”
http://www.vmware.com/products/player/.

[6] “Virtualbox website,” https://www.virtualbox.org/.

[7] D. L. Gonzalez, F. Fernandez de Vega, L. Trujillo, G. Olague,
M. Cardenas, L. Araujo, P. Castillo, K. Sharman, and A. Silva,
“Interpreted applications within BOINC infrastructure,” in
IBERGRID 2nd Iberian Grid Infrastructure Conference Pro-
ceedings, F. Silva, G. Barreira, and L. Ribeiro, Eds. Porto,
Portugal: netbiblo.com, 12-14 May 2008, pp. 261–272.

[8] “Boinc vboxapps,” http://boinc.berkeley.edu/
trac/wiki/VboxApps.

[9] P. Buncic, C. A. Sanchez, J. Bloomer, L. Franco,
S. Klemer, and P. Mato, “Cernvm a virtual software
appliance for lhc applications,” in Proceedings of the
XII. International Workshop on Advanced Computing and
Analysis Techniques in Physics Research, 2008. [Online].
Available: http://cdsweb.cern.ch/record/1269671?ln=ja

[10] “Cernvm/vboxwrapper test project,”
http://boinc.berkeley.edu/vbox/.

[11] D. Bartholomew, “Qemu: a multihost, multi-
target emulator,” Linux J., vol. 2006, no.
145, pp. 3–, May 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1134160.1134163

[12] E. Siever, Linux in a nutshell, 6th ed. OReilly, 2005.

[13] J. Fisher-Ogden, “Hardware support for efficient virtualiza-
tion,” University of California, San Diego, Tech. Rep., 2006.

[14] A. C. Marosi, P. Kacsuk, G. Fedak, and O. Lodygensky,
“Sandboxing for desktop grids using virtualization,” in
Proceedings of the 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, ser.
PDP ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 559–566. [Online]. Available:
http://dx.doi.org/10.1109/PDP.2010.90

[15] “Ofcom website,” http://www.ofcom.org.uk/.

[16] “Stress workload generator,”
http://weather.ou.edu/ apw/projects/

stress/.

[17] A. J. Younge, R. Henschel, J. Brown, G. von Laszewski,
J. Qiu, and G. C. Fox, “Analysis of virtualization technologies
for high performance computing environments,” in The 4th In-
ternational Conference on Cloud Computing (IEEE CLOUD
2011), IEEE. Washington, DC: IEEE, 07/2011 2011, Paper.

[18] P. Domingues, F. Araujo, and L. Silva, “Evaluating the
performance and intrusiveness of virtual machines for
desktop grid computing,” in Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed
Processing, ser. IPDPS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5161134

[19] M. Piotrowski, G. McGilvary, T. Sloan, M. Mewissen,
A. Lloyd, T. Forster, L. Mitchell, P. Ghazal, and J. Hill,
“Exploiting parallel r in the cloud with sprint,” Methods of
Information in Medicine, vol. 52, pp. 80–90, 2013.

[20] D. P. Anderson and G. Fedak, “The computational and storage
potential of volunteer computing,” in Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 73–80. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2006.101

[21] D. P. Anderson, E. Korpela, and R. Walton, “High-
performance task distribution for volunteer computing,”
in Proceedings of the First International Conference on
e-Science and Grid Computing, ser. E-SCIENCE ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
196–203. [Online]. Available: http://dx.doi.org/10.1109/E-
SCIENCE.2005.51

