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Abstract

Cloud computing is an emerging technology that allows

users to utilize on-demand computation, storage, data and

services from around the world. However, Cloud service

providers charge users for these services. Specifically, to

access data from their globally distributed storage edge

servers, providers charge users depending on the user’s lo-

cation and the amount of data transferred. When deploying

data-intensive applications in a Cloud computing environ-

ment, optimizing the cost of transferring data to and from

these edge servers is a priority, as data play the dominant

role in the application’s execution. In this paper, we formu-

late a non-linear programming model to minimize the data

retrieval and execution cost of data-intensive workflows in

Clouds. Our model retrieves data from Cloud storage re-

sources such that the amount of data transferred is inversely

proportional to the communication cost. We take an exam-

ple of an ‘intrusion detection’ application workflow, where

the data logs are made available from globally distributed

Cloud storage servers. We construct the application as

a workflow and experiment with Cloud based storage and

compute resources. We compare the cost of multiple execu-

tions of the workflow given by a solution of our non-linear

program against that given by Amazon CloudFront’s ‘near-

est’ single data source selection. Our results show a savings

of three-quarters of total cost using our model.

1 Introduction

Scientific and commercial applications are leveraging

the power of distributed computing and storage resources

[4, 18]. These resources are available either as part of

general purpose computing infrastructure such as Clusters

and Grids, or through commercially hosted services such as

Clouds [1]. Clouds have been defined to be a type of par-

allel and distributed system consisting of inter-connected

and virtualized computers. These computers can be dy-

namically provisioned as per users’ requirements [3]. Thus,

to achieve better performance and scalability, applications

could be managed using commercial services provided by

Clouds, such as Amazon AWS, Google AppEngine, and

Microsoft Azure. Some of these cloud service providers

also have data distribution services, such as Amazon Cloud-

Front1. However, the cost of computing, storage and com-

munication over these resources could be very high for

compute-intensive and data-intensive applications.

Data mining is an example application domain that com-

prises of data-intensive applications often with large dis-

tributed data and compute-intensive tasks. The data to be

mined may be widely distributed depending on the nature

of the application. As the size of these data-sets increases

over time, the analysis of distributed data-sets on comput-

ing resources by multiple users (repeated executions) has

the following challenges:

• A well-designed application workflow: Large number of

data-sets and mining tasks make the application complex

• Minimization of communication and storage costs: Large

size and number of distributed data-sets make the appli-

cation data-intensive

• Minimization of repeated data mining costs: Cost of com-

puting (classification/knowledge discovery) and transfer-

ring of data increases as the number of iterations/data-sets

increase

In this paper, we address the challenges listed above

for data-intensive workflows by making the following three

contributions:

1. We take Intrusion detection as a data mining applica-

tion which will be referenced throughout the remain-

der of this paper. This application has all the fea-

tures as listed in the previous paragraph when execut-

ing commercially [18]. We design the application as a

workflow that simplifies the basic steps of data mining

into blocks.

2. We model the cost of execution of an intrusion detec-

tion workflow on Cloud resources using a Non-Linear

Programming (NLP) model. The NLP-model retrieves

1http://aws.amazon.com/cloudfront/
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data partially from multiple data sources based on the

cost of transferring data from those sources to a com-

pute resource, so that the total cost of data-transfer and

computation cost on that compute resource is mini-

mized.

3. We then apply the NLP-model on the intrusion de-

tection application to minimize repeated execution

costs when using commercial compute and storage re-

sources. As an example, we compare the costs be-

tween our model and Amazon CloudFront.

The remainder of the paper is organized as follows: we

present intrusion detection application and its workflow de-

sign in Section 2; cost minimization problem using NLP

model in Section 3; the NLP-model and its use for the intru-

sion detection application in Section 4; experimental setup

in Section 5 and analysis in Section 6; related work in Sec-

tion 7. We conclude the paper in Section 8.

2 Intrusion Detection Using Data from Dis-

tributed Data Sources

First, we describe an use-case for Internet worm detec-

tion. Then, we describe the process of intrusion detection

in general and present a workflow design for executing data

mining steps over distributed intrusion data logs.
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Figure 1: Global Intrusion Detection scenario

2.1 Intrusion detection scenario

Intrusion detection as defined by the SysAdmin, Audit,

Networking, and Security (SANS2) institute is the act of

detecting actions that attempt to compromise the confiden-

tiality, integrity or availability of a resource. We take an

example of detecting the spread of a malicious worm over

the Internet.

In practice, a large number of independent networks

spanning throughout the Internet share their network logs

to detect such an outbreak. The logs from each individual

network are continuously fed to the Amazon Cloud storage

(or some other services), which distributes them to globally

distributed edge servers.

2http://www.sans.org/resources/idfaq/what isid.php

The aim of the intrusion detection system (or the analyst)

is to analyze these combined logs to detect an outbreak of

a worm. Such analysts can be located at multiple locations

close to some of the data sources but at a large network

distance from a majority of the other data sources.

Assuming that every intrusion detection system (or an-

alyst) follows the same data mining process, which we de-

scribe later in the paper, the Naive approach is to separately

aggregate the log data from all independent networks for

every analyst. It is not hard to visualize the redundancy in

the data transfer (for each individual network) and hence the

cost associated with such massive amount of data transfers.

Using the distributed edge servers, we can minimize the

cost of data transfer to each individual intrusion detection

system (analyst). We represent this scenario in Figure 1.

With an aim to minimize the cost of data transfer, we de-

velop a non linear programming based approach, described

later in the paper, and compare it with the standard nearest

source approach adopted by CloudFront and observe that

our model achieves a significant savings of three-quarters

of the total cost.

2.2 Intrusion detection process as a workflow

Data mining techniques have become prominent in de-

tecting intrusions [9, 8]. Detecting intrusions can be con-

sidered as finding the outliers (or unusual activities) and,

hence, data mining can be easily applied to perform this

task.

We modeled the intrusion detection process as a work-

flow as depicted in Figure 2. The figure separates the train-

ing, testing, and real-time processes into blocks as Block A,

Block B and Block C, respectively. The first step for train-

ing is to collect some training data, which can be the con-

tents of IP packets, web server logs, etc.. Collected data are

pre-processed (normalization, adding missingvalues, etc),

represented in a format that is supported by the data mining

tool (in our case it is .arff format), and pruned to contain

a small set of features that are significant to improve the

performance and accuracy of the system. The feature se-

lection is the attribute selection (AS) in the figure. Apply-

ing these selected features on the training data is the Filter

(F) process. Finally, with the reduced training data, we ap-

ply different algorithms to train corresponding models. In

our experiments, we selected well known methods for data

mining and intrusion detection such as Naive Bayes (NB),

Decision Trees (DT) and Support Vector Machines (SMO).

To evaluate the effectiveness of the trained models, we

perform the testing on the test data (Block B in the figure).

We repeat the same steps as in Block A on the test data,

except the AS. We then use the trained model to generate

output using the test data. Finally, we select the best per-

forming model based on the accuracy of classification of

individual models, denoted as (A) in the figure. This model,
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Figure 2: Intrusion Detection workflow

which is the most accurate, is then used on the real-time data

from distributed data sources (Block C in the figure). Real-

time data is filtered (F), then the best model applied (B) and

the output (O) is generated.

The input data for Block A are the training data, Block

B are the testing data and Block C are the real-time data.

The output data from each task are labels. At the end of

Block A’s execution, three models (nb.model, dt.model &

smo.model) files are created, which then becomes input for

Block B. Block B’s execution generates of the most accu-

rate model (best.model) as input for Block C. Block C then

applies the model for the real-time data logs to obtain the

intrusion classification.

3 Cost Minimization using Non-Linear Pro-

gramming Model

3.1 Notations and problem

We denote an application workflow using a Directed

Acyclic Graph (DAG) by G=(V, E), where V ={T1, ..., Tn}
is the set of tasks, and E represents the data dependencies

between these tasks, that is, tdatak = (Tj , Tk) ∈ E is the

data produced by Tj and consumed by Tk.

We have a set of storage sites S = {1, ..., i}, a set of

compute sites P = {1, ..., j}, and a set of tasks T =
{1, ..., k}. We assume the ‘average’ computation time of

a task Tk on a compute resource Pj for a certain size of

input is known. Then, the cost of computation of a task

on a compute host is inversely proportional to the time it

takes for computation on that resource. We also assume

the cost of unit data access txcosti,j from a storage re-

source Si to a compute resource Pj is known. The trans-

fer cost is fixed by the service provider (e.g. Amazon

CloudFront) or can be calculated according to the band-

width between the sites. We assume that these costs are

non-negative, symmetric, and satisfy the triangle inequal-

ity: that is, txcosti,j = txcostj,i for all i, j ∈ N , and

txcosti,j + txcostj,k ≥ txcosti,k for all i, j, k ∈ N . These

relations can be expressed as:

ecost ∝ 1/{execution time or capability of resource}
txcost ∝ bandwidth OR = (tx cost/unit data)/site
total cost of computation :

C ≤ ecost ∗ etime + txcost ∗ data + overheads

The cost-optimization problem is: Find a feasible set of

‘partial’ data-sets {dk
i,j} that must be transferred from stor-

age host Si to compute host Pj for each task (Tk ∈ V ) such
that the total retrieval cost and computation cost of the task

on Pj is minimal, for all the tasks in the workflow (not vio-

lating dependencies) .

3.2 Non-linear model

Here, we try to get the minimum cost by formulating

a non-linear program for the cost-optimization problem, as

depicted in Figure 3. The formulation uses two variables

y, d and pre-computed values txcost, ecost, txtime, etime
as listed below:

• y characterizes where each task is processed. yk
j = 1 iff

task Tk is processed on processor Pj .

• d characterizes the amount of data to be transferred to a

site. e.g. dk
i,j = 50.2 denotes 50.2 units of data are to be

transferred from Si ⇒ Pj for task Tk.

• txcost characterizes the cost of data transfer for a link

per data unit. e.g. txcosti,j = 10 denotes the cost of data

transfer from Si ⇒ Pj . It is added to the overall cost iff

dk
i,j > 0 & yk

j = 1.

• ecost characterizes the cost of computation (usage time)

of a processor. e.g. ecostj = 1 denotes the cost of using

a processor Pj . It is added to the overall cost iff yk
j = 1.

• txtime characterizes the average time for transferring

unit data between two sites. e.g. txtimei,j = 50 de-

notes the time for transferring unit data from S i ⇒ Pj .

It is added to the Execution Time (ET) for every task iff

dk
i,j > 0 & yk

j = 1.

• etime characterizes the computation time of a task aver-

aged over a set of known and dedicated resources. e.g.

etimek
j = 20 denotes the time for executing a task Tk on

a processor Pj . It is added to ET iff yk
j = 1.

The constraints can be described as follows:
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Minimize total Cost (C)
C =

∑

i∈S,j∈P,k∈T

dk
i,j ∗ txcosti,j ∗ yk

j + ecostj ∗ etimek
j ∗ yk

j

Subject to :
(a) ∀k ∈ T, j ∈ P yk

j ≥ 0
(b) ∀i ∈ S, j ∈ P, k ∈ T dk

i,j ≥ 0
(c) ∀k ∈ T tdatak ≥ 0
(d) ∀i ∈ S, j ∈ P txcosti,j ≥ 0
(e) ∀i ∈ S, j ∈ P txtimei,j ≥ 0
(f) ∀k ∈ T, j ∈ P ecostj ≥ 0
(g) ∀k ∈ T, j ∈ P etimek

j ≥ 0

(h)
∑

j∈P

yk
j = 1

(i)
∑

i∈S,j∈P

yk
j ∗ dk

i,j = tdatak

(j)
∑

i∈S,j∈P,k∈T

yk
j ∗ dk

i,j =
∑

k∈T

tdatak

Execution time of task k (ET k)
ET k =

∑

i∈S,j∈P,k∈T

(dk
i,j ∗ txtimei,j ∗ yk

j ) + etimek
j ∗ yk

j





Figure 3: NLP-model

• (a) & (h) ensure that each task k ∈ T is computed only

once at processor j ∈ P when the variable yk
j > 0. For

partial values of yk
j , we round up/down to the nearest in-

teger (0 or 1). Tasks are not partitioned or migrated.

• (b) & (c) ensure that partial data transferred and total data

required by a task cannot be negative.

• (d), (e), (f) and (g) ensure that cost and time values are all

positive.

• (i), (a) & (b) ensure that partial-data are transferred only

to the resource where a task is executed. For all such

transfers, the sum of data transferred should equal to the

data required by the task, which is tdatak.

• (j) ensures that the total data transfer for all the tasks are

bounded by the sum of data required by each task. This is

important for the solvers to relate (h), (i) & (j),

• (i) & (j) combined ensure that whenever partial-data dk
i,j

is transferred to a compute host Pj , then a compute host

must have been selected at j (yk
j = 1), and that total data

transfer never exceeds the bound tdatak for each task and

in total.

To get an absolute minimum cost, we map the tasks in

the workflow onto resources based only on cost optimiza-

tion (not time). This eliminates the time dependencies be-

tween tasks. However, the task to compute-resource map-

pings and data-source to compute-resource mappings min-

imizes the cost of execution but not the makespan. The

execution time of a task (ET k) is calculated based on the

cost-minimized mappings given by the solver. The total:∑
k∈T (ET k+waiting time) is the makespan of the work-

flow with the minimum cost, where the waiting time de-

notes the minimum time a task has to wait before its parents

finish execution.

4 Cost Minimization for The Intrusion De-

tection Application

In this section, we describe the method we used to solve

the non-linear program formulated in Section 3. We then

describe how we applied the solution for minimizing the

total cost of execution to the intrusion detection application

workflow.

NLP-solver: We wrote a program using the Modelling

Language for Mathematical Programming (AMPL) [6] for

solving our NLP-model. We used DONLP2[14], a non-

linear program solver, to solve the model. The computation

time of the solver to reach a solution (for a maximum of

2000 iterations) was less than 2 seconds, which is insignif-

icant as compared to the data-transfer time in our experi-

ments.

Partial-data retrieval and task-to-resource mapping:

Based on the integer values of yk
j given by DONLP2, we

statically mapped the tasks in the intrusion detection ap-

plication workflow to each compute resource P j . Data re-

trievals are also fixed for each ready task from each S based

on the value of dk
i,j and yk

j = 1. The steps of mapping

and data retrievals are given in Algorithm 1. The heuristic

computes the values for task mapping yk
j and dk

i,j for all the

tasks in the beginning according to the solution given by

a NLP-solver. As all the tasks in the workflow are mapped

initially, the for loop preserves the dependencies of the tasks

by dispatching only the ready tasks to the resources. For

dispatched tasks, partial data retrievals to the assigned com-

pute resource occur from chosen resources. All child tasks

wait for their parents to complete, after which they appear

in the ready list for dispatching. The scheduling cycle com-

pletes after all the tasks are dispatched successfully. The

output data of each completed task is staged back to the

Cloud storage as part of the task’s execution. The Cloud

storage should ensure that the files are distributed to the

edge-servers within certain time bound such that child tasks

do not have to wait for availability of data longer than down-

loading directly from the Cloud’s central server.

5 Experimental Setup

In this Section, we describe Intrusion Detection data and

tools, the experimental setup and the results.
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Algorithm 1 Scheduling Heuristic

1: Compute yk
j & dk

i,j for all tasks by solving the NLP

2: repeat

3: Get all the ‘ready’ tasks in the workflow

4: for each task tk ∈ Tready do

5: Assign tk to the compute resource P for which yk
j = 1

6: Fix partial data transfers dk
i,j from Si to the compute resource

Pj for which yk
j = 1

7: end for

8: Dispatch all the mapped tasks for execution

9: Wait for POLLING TIME
10: Update the ready task list

11: (Upload output files of completed tasks to the storage central for

distribution)

12: until there are unscheduled tasks in the ready list

5.1 Intrusion detection application data and tools

Data: For our experiments, we used part of the bench-

mark KDD’99 intrusion data set 3. This database contains

a standard set of data to be audited, which includes a wide

variety of intrusions simulated in a military network envi-

ronment. We use 10 percent of the total training data and

10 percent of the test data (with corrected labels), which are

provided separately. Each record in the data set represents

a connection between two IP addresses, starting and ending

at defined times and protocol. Furthermore, every record

is represented by 41 different features. Each record repre-

sents a separate connection and is hence considered to be

independent of any other record. Training data are either la-

beled as normal or as one of the 24 different types of attack.

These 24 attacks can be grouped into four classes; Probing,

Denial of Service (DoS), unauthorized access from a remote

machine (R2L) and unauthorized access to root (U2R). Sim-

ilarly, test data are also labeled as either normal or as one of

the attacks belonging to the four attack groups.

To perform data mining we used algorithms imple-

mented in an open source WEKA library [16]. We used

three types of probabilistic classification models: Naive

Bayes, decision tree and Sequential Minimal Optimization

(SMO), from the WEKA library. The number of log-data

analysis for detecting intrusion varies depending on the

characteristics of the log data. To reflect all types of scenar-

ios, we perform the real-time log-data analysis for 10 times.

We interpolate the cost for 10,000 times execution by mul-

tiplying the cost of 10 executions multiplied by 1000.

The total data used by the intrusion detection workflow

(Figure 2) is divided into 30MB, 60MB, 90MB and 120MB.

This was be achieved by filtering the training, testing and

real-time data by random sampling.

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

5.2 Middleware and tools

We used Gridbus-Workflow Engine4 [13] for schedul-

ing and managing workflow executions on Cloud resources.

We use the scheduling heuristic listed in Algorithm 1.

Both, multi-site partial downloads and CloudFront down-

loads were carried out over HTTP using JPartialDown-

loader tool5. HTTP/1.1 range requests allow a client to re-

quest portions of a resource.

5.3 Distributed compute and storage resources

For selecting the nearest storage location of a file relative

to a compute resource, we use the functionality of Amazon

CloudFront. CloudFront fetches data to a compute resource

from the nearest edge-server. The data transfer cost (per

GB) from the edge locations is presented in Table 1. The

data transfer cost (DTx cost) from the CloudFront to the ex-

ecution sites is based on the edge location through which the

content is served. We assume the data transfer cost to and

from a storage location to be equal in all our experiments.

This simplifies the model for the selection of storage sites

for partial data retrievals and data upload. For partial data

retrievals, all the resources listed in Table 1 also served as

storage resources. For our experiments, we ignored the data

storage cost on Clouds, which could easily be added to the

overall execution cost as a constant (e.g. $0.150 per GB for

the first 50 TB / month of storage used6).

We used compute resources from US, Europe and Asia

as listed in Table 1. The execution cost (Ex cost) on each

CPU is calculated based on the number of cores (cost is

similar to Amazon EC2 instances) available.

6 Analysis

We now present results obtained by executing the in-

trusion detection application workflow using globally dis-

tributed resources as listed in Table 1.

6.1 Experiment objectives

We conduct the following two classes of experiments:

1. Measure total cost when using commercial Cloud as

content distribution and publicly available compute re-

sources for execution (ecostj = 0, txcosti,j > 0).

2. Measure total cost of execution when using commer-

cial Cloud for content storage, distribution and execu-

tion (ecost > 0, txcosti,j > 0)

The first experiment (subsection 6.2.1) measures the cost

of data transfer if Cloud resources were used only for data

distribution and tasks executed on publicly available com-

pute resources. In this scenario, the compute resources

in Table 1 served both as storage (mimicking distributed

Cloud storage) and compute resources. We use a solution

4http://www.cloudbus.org/papers/Workflow-CCPE2009.pdf
5http://jpd.sourceforge.net/
6http://aws.amazon.com/s3/#pricing
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to our model for determining quantity of partial data trans-

fers from the distributed storage such that the transfer cost is

minimized. The tasks are mapped to the compute resources

such that the partial transfers have minimum cost.

The second experiment (subsection 6.2.2) measures the

cost of executing the application on Cloud resources, with

non-zero data transfer and computation costs. In this sce-

nario, our model gives a solution for minimizing both par-

tial data transfers and computation costs, with tasks mapped

to resources accordingly. Here too, the compute-servers in

Table 1 serve as distributed Cloud storage and compute re-

sources.

We compare the costs obtained from each of the above

experiments against the cost incurred when using data-

transfers from nearest (with respect to the compute resource

where the task is assigned) Cloud storage resource. We

measure the total cost incurred for transferring data from

nearest location by making compute-resource cost: zero (re-

lating to publicly available resources) and non-zero (relat-

ing to commercial Cloud resources), consecutively.

We finally compare the cost savings when using NLP

based task+data resource selection against CloudFront’s

data resource selection.

6.2 Results

The results obtained are an average of 15 executions.

The cost values in Figures 4 and 5 are for executing a sin-

gle instance of the intrusion detection workflow. The cost

values in Figure 6 are the result of executing the workflow

10,000 times (the cost of 10 executions multiplied by 1000).
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Figure 4: Comparison of transfer cost with no execution cost.

6.2.1 Scenario 1: Data in Cloud and execution on pub-

lic compute resources

Figure 4 compares the cost of transferring data to com-

pute resources between NLP-solver based source selection

and single source selection given by CloudFront. We set

the execution cost to zero for comparing only the transfer

cost. The results show that the total data transfer cost is

minimized when using NLP-solver based storage host se-

lection for all size of data. As the size of data increases

from 30MB to 120MB, the benefit of transferring data us-

ing NLP compared with CloudFront increases. For the to-

tal size of 120MB data, using the CloudFront would cost

$0.025, whereas using NLP the cost decreases to $0.020.

The difference in cost is huge for large experiments, as an-

alyzed later in subsection 6.2.3.

The reason for the decrease in cost is NLP-solver trans-

fers partial data in proportion to the cost of communication,

as the data transfer cost is divided among all the cheapest

links. CloudFront selects the a single best source for data

transfer. Transferring data using CloudFront becomes more

expensive as the size of these data increases.
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Figure 5: Comparison of total cost when both computation and

transfer costs are non-zero.

6.2.2 Scenario 2: Data and execution on Cloud re-

sources

Figure 5 depicts the total cost of executing the intrusion

detection workflow on Cloud resources when using NLP-

solver based task-resource mapping and (a) NLP-solver

based data source selection (labelled as NLP in the fig-

ure), (b) CloudFront based data source selection (labelled

as CloudFront in the figure). The NLP based task-resource

mapping was used to make a fair comparison on data trans-

fer cost between our approach and CloudFront. In this case,

the NLP-model embeds the minimization of both the execu-

tion costs and data transfer costs into one objective function

to be minimized, as listed in Figure 3. As two costs were in-

volved, the total cost increased when compared to only the

data transfer cost depicted in Figure 4. Nevertheless, partial

data transfers based on NLP-based data source selection in-

curred the minimal cost for all range of data sizes.

Even when the task-resource mapping was based on

NLP, the total cost savings for 120MB of data processed

was $0.02 on average for 1 execution. If both task-resource

mapping and data retrievals were based on existing heuris-

tics (earliest finish time for compute and best resource for

data), our approach would have had more savings.

6.2.3 Total cost savings

Figure 6 depicts the cost of executing the real-time anal-

ysis section, depicted as Block C in Figure 2), 10,000
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Figure 6: Comparison of total execution cost between NLP based

mapping (with and without CloudFront) (round-robin based map-

ping as an upper-bound only).

Table 1: Distributed Compute Resources

Physical Compute Nodes cores
Ex cost

$/hr
DTx cost

$/GB
Nearest
Region

rotegg.dps.uibk.ac.at 1 $0.10 $0.170 Europe
aquila.dacya.ucm.es 1 $0.10 $0.170 Europe
tsukuba000.intrigger.omni.hpcc.jp 8 $0.80 $0.221 Japan
omii2.crown-grid.org 4 $0.40 $0.210 China
snowball.cs.gsu.edu 8 $0.80 $0.170 US
node00.cs.binghamton.edu 4 $0.40 $0.170 US
belle.csse.unimelb.edu.au 4 $0.40 $0.221 Japan
manjra.csse.unimelb.edu.au 4 $0.40 $0.221 Japan

times (Blocks A and B are usually computed only once

for each set of data). The cost values for each data group

were derived from the cost of 10 executions multiplied by

1000. The most costly approach was when using round-

robin based task-resource mapping algorithm and nearest

source data retrievals. This value should be interpreted as an

upper bound for comparison purposes only. This cost was

reduced by 77.8% ($466.8) when we used the NLP-solver

based mapping and multi-source partial data retrieval; and

by 76.2% ($457.2) when we used NLP-solver based map-

ping and data retrieval from CloudFront’s best source. This

would amount to savings of three-quarters of the total ex-

penditure if intrusion detection systems were to be executed

on Clouds using our model. When the costs obtained by

using NLP based approach was compared to CloudFront’s,

NLP was able to reduce the cost by $7.1 on average. This

cost savings would cumulate to be higher for larger data

and repeated experiments. Thus, for all scenarios, the to-

tal cost incurred when using NLP-solver is lower than the

cost incurred when using Amazon’s CloudFront based data

retrieval.

We tabulated the cost of computation and data transfer

according to Amazon’s current pricing policy in Table 1.

The highest computation cost of Amazon Cloud resources is

more than the highest data transfer cost7. Armbrust et al. [1]

have compared the normalized cost of computing resources

and WAN bandwidth between 2008 and 2003. Their data

clearly shows that the cost/performance improvement is 2.7

7assuming transferring 1GB from Amazon takes 1 hour of CPU time

times and 16 times for WAN bandwidth and CPU hours, re-

spectively. This trend hints to the fact that data transfer costs

are not decreasing as much as computation cost. Hence, for

data-intensive applications, total cost savings on communi-

cation is a necessity as compared to computation cost.

7 Related Work

Armbrust et al. [1] described the benefits of moving to

Cloud computing. These benefits include lower operating

costs, physical space savings, energy savings and increased

availability.

Deelman et al. [4] presented a case study for examining

the cost-performance tradeoffs of different workflow exe-

cution modes and provisioning plans for Cloud resources.

They concluded that data-intensive applications can be ex-

ecuted cost-effectively using Cloud computing infrastruc-

ture. In our paper, we focus on the minimization of commu-

nication cost using globally distributed Cloud edge-servers

and compute nodes.

Amazon CloudFront uses edge locations in United

States, Europe, and Asia to cache copies of the content for

faster delivery to end users. It provides users address in the

form of a HTTP/HTTPS uniform resource locator (URL) .

When a user requests one of these data from any site, Ama-

zon CloudFront decides which edge location is ‘best’ able

to serve the request to that user’s location. However, users

do not have control over the amount of data to get from each

edge servers, to minimize cost, unless they access the URL

from a different location. We compare our approach with

this ‘best’ location approach.

Wu et al. [17] presented the design and implementa-

tion of Collaborative Intrusion Detection System (CIDS) for

efficient intrusion detection in a distributed system. They

claim that aggregate information is more accurate than ele-

mentary data for intrusion detection.

Zeller et al. [18] presented the advantages of using Cloud

computing for data mining applications, especially when

the size of data is huge and globally distributed.

Broberg et al. [2] introduced MetaCDN, which uses

‘Storage Cloud’ resources to deliver content to content cre-

ators at low cost but with high performance (in terms of

throughput and response time).

Microsoft has a Windows Workflow Foundation for

defining, managing and executing workflow as part of its

.NET services. With the .NET services, workflows can be

hosted on Clouds for users to access it from anywhere [12].

The service facilitates transparent scalability for persistence

stores and distribution of load between hosts.

A number of work in Grid computing, especially those

related to Data Grids, have focused on optimal selection of

data sources while scheduling applications [15, 11]. Also,

some existing workflow systems [5, 7, 10] use a variety

of optimization metrics such as the execution time, effi-
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ciency, economical cost, or any user-defined QoS parameter

for scheduling workflow applications. In Grids, users were

not able to provision required type of resources at specified

locations as demanded by applications. In Clouds, how-

ever, users can first choose the set of compute and storage

resources they want for their application and then use our

model for minimizing the total cost. The initial selection

may be based on user’s budget allocated for executing the

application in Clouds.

8 Conclusions

In this work, we presented the execution of an intru-

sion detection application workflow using Cloud resources,

with an objective of minimizing the total execution cost.

We modeled the cost minimization problem and solved it

using a non-linear program solver. Based on the solu-

tion, we retrieved data from multiple data sources to the

compute resource where a task was mapped, unlike previ-

ous approaches, where data was retrieved from the ‘best’

data source. Using our NLP-model we achieved savings of

three-quarters of the total cost as compared to using Cloud-

Front’s ‘best’ data source selection, when retrieving data.

We conclude that by dividing data retrievals to dis-

tributed datacenters or storage Clouds in proportion to their

access cost (as in our model), users can achieve signifi-

cant cost savings than when using existing techniques. As

part of our future work, we would like to explore proactive

scheduling of data retrievals across multiple datacenters in

Clouds.
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