
V-BOINC: The Virtualization of BOINC

Gary A. McGilvary
Edinburgh Data-Intensive

Research Group
School of Informatics

The University of Edinburgh
gary.mcgilvary@ed.ac.uk

(student author)

Adam Barker
School of Computer Science

University of St Andrews
adam.barker@st-

andrews.ac.uk

Malcolm P. Atkinson
Edinburgh Data-Intensive

Research Group
School of Informatics

The University of Edinburgh
mpa@staffmail.ed.ac.uk

Ashley D. Lloyd
Business School

The University of Edinburgh
ashley@edinburgh.ac.uk

1. INTRODUCTION
Volunteer computing, made popular by BOINC and

SETI@Home gives members of the general public the
opportunity to offer their computational resources to
distributed scientific research projects. Despite its pop-
ularity, BOINC still has many drawbacks, most of which
relate to BOINC applications running in the user space
of the volunteer machine.

Project developers are required to port their appli-
cation to every target machine architecture and must
also provide application-level checkpointing to ensure
job progress is not lost upon host termination or fail-
ures. Furthermore, project developers are limited to
creating applications that have no dependencies and the
users of BOINC must trust that project servers they at-
tach to, will not distribute malicious or untrustworthy
applications. These drawbacks can result in project de-
velopers taking additional time to implement measures
to solve such problems.

With virtualization, many of these issues are solved.
One only needs to port an application to a single virtual
machine architecture, host security in which the host is
protected from third party applications is inherently ad-
dressed by the sandbox environment and system-level
checkpointing is available. Applications with dependen-
cies can also easily run where dependencies can be at-
tached to a virtual machine enabling application devel-
opers to deploy more complex applications to obtain
results of more value. In this abstract we present vir-
tual BOINC, or V-BOINC that introduces virtualiza-
tion into the BOINC framework.

2. V-BOINC ARCHITECTURE
The foundation of our approach relies on sending

lightweight virtual machine images from a modified
BOINC server (V-BOINC Server), to volunteer clients
allowing BOINC applications to run within the vir-
tual machine itself rather than in the user space of the
host. This is implemented by installing a BOINC client

within the virtual machine image to fetch applications
for a user specified project. This is in addition to the
modified BOINC client (V-BOINC Client) installed on
the user’s host to download the virtual machine image.
These components are depicted in Figure 1.

Dependencies

MPI

Host Machine

V-BOINC
Server

Virtual
Macine

1. Request VM

2. VM and Script

4. Start
VM

5. Get Job

6. Executable/Data

7. Job Result

B
O
I
N
C

3. Create/
Attach

Disk, Mount
 + Setup

R

BOINC
Server

1.1. Get Disk

V-BOINC
Client

BOINC

1.1.2

Retrieve

Figure 1: V-BOINC Architecture

Upon a volunteer user submitting the details of the
BOINC scientific project they wish to attach to via the
V-BOINC Client (e.g the project server URL and their
BOINC project weak account key), the host BOINC
client is instructed to request a virtual machine im-
age (1). Concurrently, the V-BOINC Client probes the
BOINC server to determine if any dependencies exist
for the specified project (1.1). If so, a VDI (or .vdi)
file containing the dependencies is transferred to the V-
BOINC Client via curl ; we assume that developers of
BOINC projects who wish to deploy applications with
dependencies are prepared to create a virtual disk im-
age containing the dependencies (DepDisk) and make
this publicly available on the BOINC Server to allow
the V-BOINC Client to determine whether a DepDisk
needs to be downloaded.

Concurrently while a DepDisk is downloading, the
virtual machine image and an executable script are down-
loaded to the host BOINC client (2). The V-BOINC
Client either attaches the DepDisk, if the application
is found to have dependencies, or alternatively creates
an empty disk and mounts this to the virtual machine
image (3). In either case, a disk must be provided to

1

BOINC Task

VBOINC Middleware

VBOINC Client GUI

(Modified) BOINC Core Client

Downloaded Virtual Machine

BOINC Core
Client

Resource Monitor Failure Detection

VirtualBox API

Application
Dependencies

Figure 2: V-BOINC Client Compo-
nents

BOINC vs V-BOINC ExperimentsBOINC vs V-BOINC ExperimentsBOINC vs V-BOINC Experiments

Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)
Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)

BOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC framework
V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation

Average VAR STDDEV CONF Going With
Primes Calculates primes up until 300Calculates primes up until 300Calculates primes up until 300
Bare Host 12.105 12.068 12.034 12 18 13.2414 7.0778588 2.66042455259 2.33192208784 12
Bare VM 88 87 77 90 93 87 86.75 9.3139680051 8.16390289868 77
BOINC 16 17 17 12 13 15 14.75 3.84057287393 3.36634869273 12
V-BOINC 93 101 97 78 81 90 89.25 9.44722181385 8.28070286566 78

Create 5G Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5
Bare Host 67.606 69.74 73.018 57.893 65.002 66.6518 66.41325 8.14943249558 7.14316127528 57.893
Bare VM 46.047 50.347 45.397 50.831 46.747 47.8738 48.3305 6.95201409665 6.09359705812 50
BOINC 76 91 59 57 65 69.6 68 8.24621125124 7.22799003606 57
V-BOINC 72 58 55 54 52 58.2 54.75 7.39932429347 6.48567452827 52

Stress-cpu Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000
Bare Host 39 38 38 38 38 38.2 38 6.16441400297 5.40324782305 38
Bare VM 62 61 61 61 61 61.2 61 7.81024967591 6.84585988846 61
BOINC 38 38 38 38 38 38 38 6.16441400297 5.40324782305 38
V-BOINC 65 66 66 62 65 64.8 64.75 8.04673846972 7.05314764683 62

Stress-mem Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)
Bare Host 58 58 59 58 58 66.9% of total memory66.9% of total memory 58.2 58.25 7.63216876124 6.68976795271 58
Bare VM 191 191 188 190 191 85.2% of total memory85.2% of total memory 190.2 190 13.7840487521 12.0820294316 188
BOINC 59 58 58 58 58 58.2 58 7.61577310586 6.67539679121 58
V-BOINC 187 187 187 187 187 187 187 13.6747943312 11.986265469 187

Because vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentage
of memory compared to their actual totalof memory compared to their actual totalof memory compared to their actual totalof memory compared to their actual total

Bare Host has 3824MB available3824MB available
Bare VM has 3004 MB available 3004 MB available

So try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory used
Bare Host 63 62 67 64 67 64.6 65 8.0622577483 7.06675064432 62

And also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory used
Bare VM 167 166 166 175 166 168 168.25 12.9711217711 11.3694806089 166

Stress-io
Bare Host 25 26 25 25 25 25.2 25.25 5.02493781056 4.40447125595 25
Bare VM 63 63 63 63 63 63 63 7.93725393319 6.95718198272 63
BOINC 26 25 26 25 26 25.6 25.5 5.04975246918 4.42622186357 25
V-BOINC 64 65 67 67 64 65.4 65.75 8.10863737011 7.10740342827 64

Stress-disk
Bare Host 41 42 46 43 43 43 43.5 6.59545297914 5.78106320153 41
Bare VM 61 81 60 72 68 68.4 70.25 8.38152730712 7.34659760915 81
BOINC 44 39 46 41 41 42.2 41.75 6.46142399166 5.66358377291 41
V-BOINC 93 89 82 85 87 87.2 85.75 9.26012958873 8.11671231318 82

The Graph Primes Create5GB CPU Memory I/O Disk
Host 12 57 38 58 25 41
BOINC 12 57 38 58 25 41
VM 77 50 61 188 63 81
V-BOINC 78 52 62 188 64 82

Application Dependency ExperimentApplication Dependency ExperimentApplication Dependency Experiment
Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2
and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time
as it looks like it takes up %100 of one core.as it looks like it takes up %100 of one core.as it looks like it takes up %100 of one core.

Bare Host Average VAR STDDEV CONF Min
N = 2 Load: 42.18 42.498 42.338 42.338666667 0.0252813333 0.1590010482 0.1393680027 42.18

Exec: 60.338 66.356 59.763 62.152333333 13.335766333 3.6518168538 3.2008997864 59.763

N = 4 Load: 83.833 85.159 85.313 84.768333333 0.6620653333 0.8136739724 0.7132035775 83.833
Exec: 63.37 63.085 63.157 63.204 0.021963 0.1481991903 0.1298999308 63.085

BOINC
N = 2 Load: 42.809 42.805 42.202 42.605333333 0.1220123333 0.3493026386 0.3061716362 42.202

Exec: 67.238 60.601 66.545 64.794666667 13.310192333 3.6483136287 3.1978291306 60.601

N = 4 Load: 83.878 84.594 83.6 84.024 0.262996 0.5128313563 0.4495082433 83.6
Exec: 62.808 62.751 62.832 62.797 0.001731 0.0416052881 0.0364679728 62.751

Bare VM
N = 2 Load: 77.325 75.493 74.016 75.611333333 2.7478723333 1.6576707554 1.452985782 74.016

Exec: 161.974 156.032 153.447 157.151 19.116553 4.3722480488 3.8323739677 153.447

N = 4 Load: 152.008 154.929 151.885 152.94066667 2.9688843333 1.7230450758 1.5102878474 151.885
Exec: 117.621 117.466 116.885 117.324 0.150547 0.388003866 0.3400941343 116.885

VBOINC
N = 2 Load: 76.525 78.295 77.934 77.584666667 0.8747503333 0.9352808847 0.8197947772 76.525

Exec: 160.571 160.162 163.365 161.366 3.038821 1.7432214432 1.5279728882 160.162

N = 4 Load: 157.106 156.95 155.607 156.55433333 0.6791643333 0.824114272 0.7223547354 155.607
Exec: 149.609 128.264 122.939 133.604 199.208925 14.114139187 12.371361139 122.939

Bare Host vs BOINCBare Host vs BOINC

Bare Host 2 4 BOINC 2 4
Load: 42.18 83.833 Load: 42.202 83.6
Exec 59.763 63.085 Exec: 60.601 62.751

Bare VM 2 4 VBOINC 2 4
Load: 74.016 151.885 Load: 76.525 155.607
Exec: 153.447 116.885 Exec: 160.162 122.939

Load Exec
42.18 59.763

42.202 60.601
74.016 153.447
76.525 160.162

0

75

150

225

300

Primes Create5G CPU Memory I/O Disk

V-BOINC Benchmarks

Ex
ec

ut
io

n
Ti

m
e

(s
)

Benchmark

Host BOINC VM VBOINC

0

25

50

75

100

125

150

175

200

Load Exec

SPRINT on V-BOINC

Ex
ec

ut
io

n
Ti

m
e

(s
)

Operation

BOINC BOINC VM VBOINC

Figure 3: V-BOINC Benchmark Times

give the virtual machine storage space as the V-BOINC
virtual machine has been stripped of all unnecessary
components such as Linux swap space and unneeded
packages to reduce the bandwidth used when sending
to the volunteer user. The virtual machine image is
then started (4) allowing it to request (5) and receive
(6) BOINC jobs and return job results (7).

2.1 Taking Control
After the virtual machine image has been transferred

to the volunteer machine via the host, the instantiation
script (2) decompresses the virtual machine image tar
file and signals the V-BOINC Client to take control of
the instantiation process. Afterwards, the V-BOINC
Client registers the virtual machine with VirtualBox,
performs the steps (3) and (4) above and takes periodic
checkpoints when the virtual machine is running.

In this case, further complexities are introduced as
a second BOINC client located on the virtual machine
needs to be controlled as well as the virtual machine.
The interactions the V-BOINC Client makes with the
second BOINC client and virtual machine are shown in
Figure 2. We also provide components to monitor host
resources and virtual machine failure to inform the user
at run time the current state of V-BOINC.

3. EVALUATION
Now we outline the experiments to show the achiev-

able performance of V-BOINC when compared to regu-
lar BOINC and the storage requirements of our check-
pointing mechanism. We performed these by execut-
ing a number of benchmark applications: Primes cal-
culates the first 300 prime numbers (CPU intensive),
Create5GB creates a file of 5 GB using the function
dd (memory and I/O intensive) and CPU, Memory,
I/O and Disk are modified versions of the Stress work-
load generator.

3.1 V-BOINC vs BOINC
To compare the performance between the two soft-

ware packages, each benchmark is then run on the host

with and without BOINC to show the overhead or BOINC.
Similarly, the same benchmarks are run on the V-BOINC
virtual machine without the use of V-BOINC and then
with V-BOINC to firstly determine the implementation
overhead and secondly to determine the performance
differences between BOINC and V-BOINC. Our results,
shown in Figure 3, show that the implementation of
V-BOINC introduces little overhead where the differ-
ence is introduced by virtualization alone as seen by
the difference in execution times between BOINC and
V-BOINC. Similar results are obtained when we use V-
BOINC to execute an application with dependencies.

3.2 Checkpointing Storage Requirements
The storage space BOINC is permitted to use can be

limited by the volunteer hence making storage valuable.
To determine the likely storage space consumed by our
checkpointing approach, we executed the same bench-
marks and recorded the average disk consumption. Our
results show that with the exception of disk-intensive
applications, the amount of storage needed per check-
point is extremely low. This is reassuring as BOINC
typically executes CPU intensive applications. The re-
sults will be displayed within the poster.

4. CONCLUSIONS
The basic concept and implementation of V-BOINC

as well as some experimental results have been pre-
sented; more information and results will be displayed
within the poster. Many users within the volunteer
community have taken advantage of V-BOINC and in-
formation on how to do so, as well as further details on
V-BOINC can be found at [1]. We will not require a
demo to be setup for the exhibition; all available infor-
mation will be available within the poster.

5. REFERENCES
[1] Gary McGilvary, Adam Barker, Ashley Lloyd, and

Malcolm Atkinson. V-boinc: The virtualization of
boinc. In CCGrid 2013, Delft, The Netherlands,
May 2013.

2

