V-BOINC: The Virtualization of BOINC

Gary A. McGilvary
Edinburgh Data-Intensive
Research Group
School of Informatics
The University of Edinburgh
gary.mcgilvary@ed.ac.uk
(student author)

Adam Barker
School of Computer Science
University of St Andrews
adam.barker@st-
andrews.ac.uk

Malcolm P. Atkinson
Edinburgh Data-Intensive
Research Group
School of Informatics
The University of Edinburgh
mpa@staffmail.ed.ac.uk

Ashley D. Lloyd
Business School
The University of Edinburgh
ashley@edinburgh.ac.uk

1. INTRODUCTION

Volunteer computing, made popular by BOINC and
SETIQHome gives members of the general public the
opportunity to offer their computational resources to
distributed scientific research projects. Despite its pop-
ularity, BOINC still has many drawbacks, most of which
relate to BOINC applications running in the user space
of the volunteer machine.

Project developers are required to port their appli-
cation to every target machine architecture and must
also provide application-level checkpointing to ensure
job progress is not lost upon host termination or fail-
ures. Furthermore, project developers are limited to
creating applications that have no dependencies and the
users of BOINC must trust that project servers they at-
tach to, will not distribute malicious or untrustworthy
applications. These drawbacks can result in project de-
velopers taking additional time to implement measures
to solve such problems.

With virtualization, many of these issues are solved.
One only needs to port an application to a single virtual
machine architecture, host security in which the host is
protected from third party applications is inherently ad-
dressed by the sandbox environment and system-level
checkpointing is available. Applications with dependen-
cies can also easily run where dependencies can be at-
tached to a virtual machine enabling application devel-
opers to deploy more complex applications to obtain
results of more value. In this abstract we present vir-
tual BOINC, or V-BOINC that introduces virtualiza-
tion into the BOINC framework.

2. V-BOINC ARCHITECTURE

The foundation of our approach relies on sending
lightweight virtual machine images from a modified
BOINC server (V-BOINC Server), to volunteer clients
allowing BOINC applications to run within the vir-
tual machine itself rather than in the user space of the
host. This is implemented by installing a BOINC client

within the virtual machine image to fetch applications
for a user specified project. This is in addition to the
modified BOINC client (V-BOINC Client) installed on
the user’s host to download the virtual machine image.
These components are depicted in Figure 1.

1. Request VM Host Machine
V-BOING i »| BONC
Server | 2. VMand Script V-BOINC
”| Client
1.1. Get Disk 3. Create/
4. Start Attach
......... VM Disk, Mount
! Dependencies ' 5. Get Job 5 + Setup
' ' -
v 1.1.2 | Boine 6. Executable/Data | | ©| Virtual
' < > > " |
' ' . Server N [Macine
! R 1 Retrieve 7. JobResult | |¢
' >
' 1

Figure 1: V-BOINC Architecture

Upon a volunteer user submitting the details of the
BOINC scientific project they wish to attach to via the
V-BOINC Client (e.g the project server URL and their
BOINC project weak account key), the host BOINC
client is instructed to request a virtual machine im-
age (1). Concurrently, the V-BOINC Client probes the
BOINC server to determine if any dependencies exist
for the specified project (1.1). If so, a VDI (or .vdi)
file containing the dependencies is transferred to the V-
BOINC Client via curl; we assume that developers of
BOINC projects who wish to deploy applications with
dependencies are prepared to create a virtual disk im-
age containing the dependencies (DepDisk) and make
this publicly available on the BOINC Server to allow
the V-BOINC Client to determine whether a DepDisk
needs to be downloaded.

Concurrently while a DepDisk is downloading, the
virtual machine image and an executable script are down-
loaded to the host BOINC client (2). The V-BOINC
Client either attaches the DepDisk, if the application
is found to have dependencies, or alternatively creates
an empty disk and mounts this to the virtual machine
image (3). In either case, a disk must be provided to

BOINC Core
Client

Application

FOINS TEE Dependencies

VBOINC Middleware
VirtualBox API

Figure 2: V-BOINC Client Compo-
nents

give the virtual machine storage space as the V-BOINC
virtual machine has been stripped of all unnecessary
components such as Linux swap space and unneeded
packages to reduce the bandwidth used when sending
to the volunteer user. The virtual machine image is
then started (4) allowing it to request (5) and receive
(6) BOINC jobs and return job results (7).

2.1 Taking Control

After the virtual machine image has been transferred
to the volunteer machine via the host, the instantiation
script (2) decompresses the virtual machine image tar
file and signals the V-BOINC Client to take control of
the instantiation process. Afterwards, the V-BOINC
Client registers the virtual machine with VirtualBox,
performs the steps (3) and (4) above and takes periodic
checkpoints when the virtual machine is running.

In this case, further complexities are introduced as
a second BOINC client located on the virtual machine
needs to be controlled as well as the virtual machine.
The interactions the V-BOINC Client makes with the
second BOINC client and virtual machine are shown in
Figure 2. We also provide components to monitor host
resources and virtual machine failure to inform the user
at run time the current state of V-BOINC.

3. EVALUATION

Now we outline the experiments to show the achiev-
able performance of V-BOINC when compared to regu-
lar BOINC and the storage requirements of our check-
pointing mechanism. We performed these by execut-
ing a number of benchmark applications: Primes cal-
culates the first 300 prime numbers (CPU intensive),
Create5GB creates a file of 5 GB using the function
dd (memory and I/0O intensive) and CPU, Memory,
I/0 and Disk are modified versions of the Stress work-
load generator.

3.1 V-BOINC vs BOINC

To compare the performance between the two soft-
ware packages, each benchmark is then run on the host

Execution Time (s)

300

22!

15

~

0

5

0

0

V-BOINC Benchmarks

B Host I BOINC VM Il VBOINC

1
II
Hiwl I 11
I
. 1 1M
Create5G CPU Memory 170 Disk
Benchmark

Primes

Figure 3: V-BOINC Benchmark Times

with and without BOINC to show the overhead or BOINC.
Similarly, the same benchmarks are run on the V-BOINC
virtual machine without the use of V-BOINC and then
with V-BOINC to firstly determine the implementation
overhead and secondly to determine the performance
differences between BOINC and V-BOINC. Our results,
shown in Figure 3, show that the implementation of
V-BOINC introduces little overhead where the differ-
ence is introduced by virtualization alone as seen by
the difference in execution times between BOINC and
V-BOINC. Similar results are obtained when we use V-
BOINC to execute an application with dependencies.

3.2 Checkpointing Storage Requirements

The storage space BOINC is permitted to use can be
limited by the volunteer hence making storage valuable.
To determine the likely storage space consumed by our
checkpointing approach, we executed the same bench-
marks and recorded the average disk consumption. Our
results show that with the exception of disk-intensive
applications, the amount of storage needed per check-
point is extremely low. This is reassuring as BOINC
typically executes CPU intensive applications. The re-
sults will be displayed within the poster.

4. CONCLUSIONS

The basic concept and implementation of V-BOINC
as well as some experimental results have been pre-
sented; more information and results will be displayed
within the poster. Many users within the volunteer
community have taken advantage of V-BOINC and in-
formation on how to do so, as well as further details on
V-BOINC can be found at [1]. We will not require a
demo to be setup for the exhibition; all available infor-
mation will be available within the poster.

5. REFERENCES

[1] Gary McGilvary, Adam Barker, Ashley Lloyd, and
Malcolm Atkinson. V-boinc: The virtualization of
boinc. In CCGrid 2013, Delft, The Netherlands,
May 2013.

