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Abstract—Autonomously detecting and recovering from  such as costs and time requirements associated with training
faults is one approach for reducing the operational complexity  technical members of staff-to achieve these same results. If
and costs associated with managing computing environments. a system can find an appropriate recovery solution without

We present a novel methodology for autonomously generating . .
investigation leads that help identify systems faults, and extends the need for a subject matter expert, the associated costs can

our previous work in this area by leveraging Restricted Boltz- b€ immediately recovered.

mann Machines (RBMs) and contrastive divergence learning However, achieving these goals is non-trivial and has
to analyse changes in historical feature data. This allows us to posed notable challenges in both Machine Learning, and
heuristically identify the root cause of a fault, and demonstrate A yificial/Computational Intelligence. There is no assurance,

an improvement to the state of the art by showing feature f le. that If-heali t | . |
data can be predicted heuristically beyond a single instance to '0f €Xample, that sefi-nealing systems leveraging evolu-

include entire sequences of information. tionary or search-space algorithms will find an appropriate
solution for a given fault, or that any solution found will

KeywordsSelf-healing Systems; Fault Detection; Machine . .
A g = be optimal. Furthermore, computational costs of approaches

Learning; Computational Intelligence; Autonomic Computing;

Artificial Neural Networks; Restricted Boltzmann Machines that leverage these methodologies are typically higher than
others, and inherently carry a certain amount of risk of
|. INTRODUCTION failing to identify or resolve faults. Anecdotal evidence

The operational costs of large-scale computing environsuggests that in professional computing environments the
ments are continuing to increase. In order to address thifailure to recognise or mitigate a fault is never an acceptable
problem, self-managing systems are being developed thatate. It is clear, however, that such circumstances do happen
reduce the supervisory needs of computing environmentsinder human supervision, and they may be inevitable. The
Self-healing systems are one such example, and operatact remains that moving to a software based approach
by autonomously detecting then recovering from faults.poses challenges and questions regarding accountability—
Although there have been numerous advances in both afurrently associated with human administrators—and liability.
these aspects, most self-healing systems continue to requiBoth of these topics are outside of the scope of this paper,
periodic human oversight [1], [2], [3], [4]. This constraint but the preference in supervised management approaches
poses challenges for the continued reduction of costs, and ré&nds evidence to the desirability of these criteria [9], [10],
stricts self-healing recovery strategies to reactive approachg$l], [12], [13], [14]. The question remains: How can we
[5]. The importance of reducing human oversight in man-further the autonomous behaviours of self-healing systems
aging computing environments is multi-faceted. Althoughwhilst reducing the operating costs of large-scale computing
numerous direct benefits exist-such as the reduction staéfnvironments?
involvement and their associated operating costs—further Previous research has shown that it is possible to syn-
achievements can also be realised. Notably, self-healinthesise new, valid systems configurations [7], and determine
systems have properties that are showing inherent beneficommon relationships between features [15], [16]. This has
to change control schemas, and preserving baseline configelped to reactively build recovery solutions in an unsuper-
urations [6]. vised fashion and predict the validity of specific systems’

The lack of change control or a baseline configuration carconfigurations, respectively. The ability to autonomously
both introduce faults and present problems in determiningdentify anomalies has also been demonstrated by using a
their respective sources. Additionally, self-healing systemspecial type of unsupervised artificial neural network (ANN)
methodologies are also showing the capability to both deted6] called a self-organising map [17], and in our previous
and resolve faults without human supervision [5], [7], [8]. work using Hidden Markov Models (HMMs) [18]. These
This is important when considering operational constraints-approaches emphasise predictive behaviours by leveraging



historical configuration data collected from a local system.each feature’s behaviours based on the previously informa-
However, at present there are no performance evaluations tibn. Rather than using a greedy evaluation—as in previous
self-healing systems utilising these methodologies. In ordeinstantiations—the RBM uses a lazy evaluation strategy on
to understand how effective these approaches are they muigtatures that are determined to have changed from the last
be compared. known good configuration and the faulty configuration data.
In this paper we extend our previous approach for au- Features that are determined to have behaved in an unex-
tonomously evaluating the source of a fault within a systenpected manner are added to a list of potential faults, along
by using Restricted Boltzmann Machines (RBMs) to predictwith a confidence value. The confidence value is determined
the state of a feature, show how that prediction can be usedy how unlikely the behaviour is to have occurred according
to identify the source of a fault via a comparison betweento the RBM. Using the confidence value, the list of potential
the expected and actual result, and illustrate how a series ¢ults is then sorted in descending order. This provides both
features can be synthesised given an input vector. Using this measure of effectiveness of the application for determining
approach allows the application rather than an administratathe root cause of the fault, and an ability to prioritise
to find the specific cause of an anomaly. A comparisorsubsequent self-healing strategies.
is provided with the previous results using ether HMMs
or ANNSs, and the respective advantages and performance
metrics are discussed. In order to achieve the aforementioned approach, this
Lastly, we conclude with groundwork for potentially experiment leverages C# and the Windows Management In-
discovering new avenues to identify faults via more robuststrumentation (WMI) framework for data collection. A small
analysis in feature locality. It is our intent to continue to application periodically interfaces with the WMI service
develop this research further and to eventually demonstrateased on a polling interval. The polling interval determines
potential reductions in the cost of operating large-scale ITtwo properties: How frequently the WMI framework is
environments through automation. to be queried, and how much elasticity to account for in
The rest of this paper is organised as follows: Section 2ehavioural pattern analysis. Although both values are fully
contains details of the approach. Sections 3 and 4 descritagjustable, for the purposes of this experiment the polling
the implementation, and key components of the methodolinterval is set at 60 seconds, and the total size of the
ogy, respectively. Section 5 presents some early experimentdhtaset collection is limited to 30 samples. Each dataset is
results whilst Section 6 concludes with some directions foreferenced within a list, and contains a collection of tables
future exploration. that individually correspond to a WMI class. As the WMI
framework is queried, these tables are populated, associated
with their respective dataset, and then categorised. Lastly,
Using RBMs it is possible to identify the source of faults the information to be gathered is determined at run-time
within a system without human intervention. RBMs usevia a dictionary that stores a unique identifier value and the
a learning algorithm to evaluate and predict changes imames of the WMI classes to be queried.
feature behaviour by utilising historical performance and The categorisation of dataset information is accomplished
configuration data periodically gathered from the systemvia fitness tests that validate the responsibilities of the virtual
This data is then autonomously classified through the use ahachine. In this case the virtual machine’s primary purpose
fitness tests as either valid or invalid. Results from these tesis to act as a web-server for both internal and external clients.
determine the overall state of the system, and subsequentRather than using unit tests to verify a series of specific
categorise the data collected in an identical fashion. Thiproperties, fithness tests emphasise the validation of high-
information is then used to provide direction to the RBM. level processes and functions. This allows the application
If the system passes all of its fitness tests, the associatedther than an administrator to find the specific cause the
configuration is assumed to be valid. This data is theranomaly. Furthermore, the use of fitness tests in this experi-
converted into vectors based on state changes and thenent accomplishes three goals: 1.) It emulates more closely
saved to disk for potential analysis. As the system passes ithe use of policies than unit tests—a goal for self-managing
fitness tests, more information is added to the existing savesystems described by prior research [19], [20], [21], 2.)
data sets, until a collection is achieved of a pre-determinedt roughly mirrors standard practice in existing computing
value. However, as systems behaviour can and is expectashvironments where operational readiness testing or service-
to change over time, previously learned information islevel agreements are required, and 3.) It establishes the
gradually expired. This allows for elasticity in predictions groundwork for feeding in the results of this experiment
by limiting the information learned to a recent time-series. with planned future research.
If the system does not pass all of its fitness tests, the As previously stated, once a dataset is categorised as either
associated configuration is assumed to be invalid. Once avalid or invalid the application will either save the collected
invalid state has been determined an evaluation is done fanformation to disk for layer analysis, or it will look for

Il. | MPLEMENTATION
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Figure 1: Anomaly Detection Framework Logic & Architecture Diagram

anomalies, respectively. The dataset is determined to be valigehaviours are analysed by the ADFs for unexpected
if it passes all of its fitness tests. If this occurs, each propertghanges. Any feature that does not match the ADF’s
within the collection of datasets is evaluated against itselfpredicted values is added to a list of potential faults, along
The hardest part of this procedure is uniquely identifyingwith a confidence value. As long as the fault source is
the objects that have been queried. collected within the WMI data, and the feature behaviours
WMI does not provide a unique identifier for the values itare sufficiently predictable—in this case, any detectable
produces, so an intersection is used to identify like-objectghange within 30 samples that is also associated with the
based on the lowest expected rate of change for a speciffault—the root cause of a fault should be detected by the
value within a given WMI class. This value, identified by ADF.
column, is the primary reason for aforementioned WMI class  Although other learning algorithms are available, com-
dictionary’s existence. After verifying that the application paring their advantages and disadvantages remain beyond
has no more than the maximum number of datasets, anfhe scope of this experiment. However, this is an area
changes—including removed or newly discovered propertiesthat hopefully will be explored in the future in a separate
are catalogued and a vector is produced that contains chang@blication. Specifically, instead of contrastive divergence
information. It is this vector that is used to autonomouslylearning (CDL), we hope to understand how effective HMMs
train the anomaly detection framework (ADFs) in this ex- utilising the Viterbi algorithm are at generating or predicting
periment. sequences of information when compared to CDL [25]. The
The ADF in this experiment leverages contrastive diver-underlying differences between HMMs and RBMs are not
gent learning [22]. This algorithm was chosen due to itsfully explored within this paper as we anticipate readers will
suitability with RBMs object structure, and its ability to be versed in these topics.
both categorise information and synthesise a series of inputs
based on an output value. The ADF was implemented via IV. METHODOLOGY
the AForge.NET [23] and Accord.NET Frameworks [24], This experiment leveraged a virtual machine running
including the learning algorithm which is responsible for Windows 7, Internet Information Services (11S) 7.5, and one
processing observed feature behaviours into probabilitiegnstance of the ADF. The virtual machine was cloned from
and the RBM object code. This code is used in conjuncan initial image used in our prior experiments, and consisted
tion with the ADF’s classification methods for the datasetsof identical base configurations in hardware. The hardware
collected via WMI, and metrics gathering algorithms. itself was unremarkable being a standard image with 1GB of
If the dataset is determined to be invalid, the feature’s RAM, and a single disk partition divided into three volumes—



one for the OS, the ADF, and the 1IS webroot, respectivelyabling the network card, disabling the W3SVC service,
The software was identical to the original experiment upremoving the volume upon which the IS webroot was
until the point at which the ADF was allowed to run for a contained, removing all free space from any of the three
training period of 30 minutes. volumes, disabling network access from one hop above the
During this time, the fitness tests were evaluated onceirtual machine’s purview, and sabotaging the primary DNS
every 60 seconds. If a system passed all of its fithess testsesolver entry. The DFIs we instantiated included crashing
the ADF would save the configuration it gathered along withvarious services such as: The IS 7.5 W3SVC service,
an XML schema file to a local data store. These files servethe Windows IPv4 network stack, and the Windows DNS
as a mechanism for loading known good systems configservice. Each ACC or DFI was run 6 times using the same
urations quickly and, as a consequence, allowed for mordDF which was allowed access to 5, 10, 15, 20, 25, and
rapid testing. Additionally, by approaching the experiment30 configuration samples. This allowed us to realise trends
in this fashion we were able to reduce the opportunity forwithin each approach, and to see differences in both output
drift in each virtual machines’ configuration, and allow for and ADF confidence during each specific test.
greater reproducibility in the experiment. Once the machine The confidence values for each result were generated
was trained, it was exposed to either a direct fault injectiorusing contrastive divergence learning. Once a fault was
event or an adverse configuration change that was expecteltected by the ADF, it loaded the sampled data from disk
to limit the system’s ability to either connect to the internet,and instantiated an individual RBM for any feature that did
run lIS-related services, or the ability to access informatiomot have matching historical change data in both the last
stored on the the system’s disk volumes. known good (LKG) and currenti.€. faulty) configuration
The ADF was then responsible for detecting the presencdata. The RBM was then trained using the LKG values
of the fault and generating a potential root cause, as welbver 5,000 epochs before attempting to produce two values
as reporting on several key attributes including: the totakepresenting either an expected or unexpected result against
number of true positives, true negatives, false positives, anthe faulty data series. The highest value was selected as the
false negatives, the time taken in “ElapsedTicks” from themost likely category of the feature’s behaviour, and as a
point in which a fault was detected until the completedrepresentation of confidence.
generation of the ordered list of potential root causes, and The training methodology used in this experiment differs
the number of potential root causése(‘leads’). from the previous approach in two key characteristics: It
True and false positives were determined when a fauluses lazy evaluation, and a padded series of inputs. The
was detected and whether or not it was or was not presenthange from greedy evaluation to lazy was done as a general
respectively. Conversely, true and false negatives were detepptimisation; the reasoning for this is explained in further
mined when a fault was present but not detected. Howevedetail in the results section but can be summarised as logical
due to the nature of false negatives, the number of faultémprovements to the framework for skipping features that
not detected by the application had to be done by handhad identical behavioural data and as an improvement in the
This was as expected as there was no way, by definitiortptal number of computational operations.
for the application to detect such a state without external In order to train an RBM it is necessary to produce a
validation. It is also the reason that faults in this experimentollection of feature behaviours organised in a seriesa
were injected with the source already being known. Frommatrix of values that has the same dimensions as the number
this information inferential metrics such as precision, time-of samples. To ensure that this experiment leveraged the
taken, and leads generated. This data was then combin@dme total volume of input data in the previous iteration,
to produce charts showing the performance of the ADFsand to maintain consistency between the two sets of results,
relative to the same tests. ‘no data’ markers were utilised to complete a series where
The type of faults we injected had two variants: Adverseappropriate. In exchange, the ability to predict a series of
Configuration Changes (ACCs), and Direct Fault Injectionsvalues was gained versus only single values in the previous
(DFIs). The former consisted of shutting off services oriteration.
making changes to the system using normal administrative
methods. This included changing disk structures, service
states, and other properties that administrators would nor- The successful evaluation of this experiment focused
mally have access to. The latter consisted of copying coden whether or not it was possible to correctly detect the
directly into the address space of another process, whichresence of a fault, and then identify its source using
in turn was expected to produce a controlled crash. Thesa comparison of actual and synthesised feature data by
faults were introduced in such a way that the fitness testleveraging Restricted Boltzmann Machines. The results from
implemented in the ADF were expected to fail, but it would this experiment show that is is possible to meet both of these
not be aware of how or why. criteria and this methodology improves upon the previous
The specific ACCs that were instantiated included: Dis-approach. However, using an RBM comes with the costs of

V. RESULTS
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Figure 2: Time Taken represents the average number oFigure 3: The average position of the correct fault as returned by the
“ElapsedTicks” between when a fault was detected and the returADF is represented in this graph. Overall the RBM was able to list
of an ordered list of potential root causes based on confidencthe correct fault more frequently than the two previous approaches—
value. with an exception at 30 samples.

a longer initial wait time for results, higher variability within success of the ADFs were evaluated—it is simply where the
those results, and, ideally, larger training sets. correct fault is located within a list of potential root causes.
As expected the RBM required more ElapsedTicks fromThe lower the index value of the correct fault, the better the
the time a fault was detected by the ADF to complete itsADFs overall performance. The ideal ADF returns an index
training and evaluation tasks than the two prior methodolovalue of O every time for the correctly identified fault.
gies (Figure 2). This was largely due to the aforementioned On average RBM was able to produce a lower index
switch from a greedy to a lazy evaluation, and the numbeposition for the correct fault than the previous approaches—
of epochs used to train each RBM. In comparison, howevenyith the exception of the HMM (Figure 3). When using
this was an improvement overall in terms of total resource80 configuration samples the HMM was able to position
consumed. the correct fault slightly better than the RBM-0.83 versus
In the two previous instances, the number of total com-0.838, respectively. The gradient of each of these approaches
putational cycles used was much higher. Direct observatioalso suggests that the HMM could continue to outpace other
during runtime showed that both the HMM and ANN ADFs strategies.
utilised anywhere from 1-3% of the CPU for approximately
30 seconds for every minute they were active. These cycles The number of total leads represents the avenues of
were used primarily for WMI data collection and for training exploration that the ADF must account for after each object
the ADFs—both processes exited after 5, and 25 seconds dras been trained, respectively. In the case of the RBM this
average, respectively. Since the RBMs were not trained untitalue was much higher than the two previous approaches.
a fault was explicitly detected, 25 seconds of CPU time wereBy switching from greedy to lazy evaluation, changes in the
recovered for each minute the ADF was active. system’s configuration had to be accounted for all at once
In instances where a greater number of samples needadhen a fault was detected. This meant storing all of the
to be evaluated, a steep linear increase was observed in tleads over time instead of evaluating them gradually and
number of ElapsedTicks before the process completed. Thithen accounting for them via the learning algorithm. The
was due to the size of the data collection, which grew fasteresult was growth over time for the total number of features
than previous approaches. However, the approach does scalat needed to be evaluated.
relatively well. Using the modest resources provided to the Interestingly, the list size did not seem to influence the ac-
VM it took about 10 seconds to parse all 30 samples incuracy of the RBM negatively (Figure 4). Based on the fault
each iteration—each sample containing up to 30 data pointsosition, the evaluation of the correct lead was given more
on approximately 6,000 features. Naturally, changing theprecisely and more accurately than previous approaches
amount of data collected, or how much total data is stored(Figures 5 and 6, respectively). From a probabilistic
will increase the processing time. perspective, it was expected that there would be a greater
Fault position is the primary metric upon which the amount of variance in which leads were selected. Instead, it
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Figure 4: Each ADF is responsible for generating leads when &igure 5: Precision was measured by taking the total number of
fault is detected. This graph represents the average total number obrrect leads in the list divided by the same value plus the number
suspect features.€. ‘leads’) per approach at each sample size. of leads above these entries.

was noticed that the results returned by the ADF had a wider
range of outputs than previous instances. In the simplest 100 -
of terms the same inputs would return similar but notably
different results.

The variance in the RBM’s output seems to be associated
with how the RBMs are instantiated. A random seed is used
to build each node within the RBM. This value dictates the
initial state of the node, and consequently as these values
get updated in different order, the paths for each output
are assumed to also be somewhat randomised. Since this
information is used to predict entire sequences of data, the
chance for a comparison to mismatch seems to manifest 80— 5 20 3 30
at a higher rate than in previous instances. This is both
reasonable and expected considering the use of a simulated
data set—however, if a full training set were used, we would
expect the variance to drop. Figure 6: Accuracy in the RBM ADF showed an improvement over

In light of this, one possible explanation for the perfor- prior approaches. In one instance, however, the correct fault failed
mance improvement is that by keeping all of the potentiaf® € identified.
leads until the end the likelihood of missing the correct
feature was lessened. However, this theory has not yet
been tested and remains an avenue for future research. Biyided by this same information plus the number of leads
converting both the HMM and ANN ADFs to use lazy incorrectly categorised above the correct leads, plus the
evaluation it may be possible to duplicate the results we'venumber of false negatives.
seen here with the RBM. Overall the results showed an improvement from previous

As mentioned in the previous paper, a greater list of leadattempts. In the majority of cases the correct root cause
is not assumed to be better. The ideal ADF will return a listwas at presented within the list of leads—often with a high
that consists of only the correct avenues for exploration. Agonfidence value. In one instance, however, a test was run
such, the approach of the previous ADFs is more likely toto see if the ADF could determine the root cause of a fault
meet this criteria than using lazy evaluation in combinationthat was outside of the local system. This was outside of
with RBMs. the scope of the initial experiment, but we were interested

The accuracy of this experiment was measured by evalin exploring the potential results.
uating the number of correct leads in the list that matched After shutting off a network appliance upstream from
the fault source plus the number of leads that didn't matchthe VM, and using 30 known good configuration samples,
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used to understand the source of a fault through feature

Harmonic Mean locality.
05 Leveraging contrastive divergence learning in RBMs,
“ANN makes it possible to predict a sequence of feature behaviours.
\/_/'/ = HvMM  This has several implications, but most notably using a
< 04 multi-step prediction algorithm means there is potential to
2 T ReM switch from a reactive to a pro-active detection of faults,
§ 03 and to understand if the root cause of a fault has multi-
£ ple sources+. feature locality). By instantiating a self-
T 02l o - . - adaptive primitive with the ability to predict a sequence of
N . = s values, leveraging existing feature locality detection tech-
u - i . niques becomes more accessible [16], [26].
01— o 15 20 m  3:0 Using a partially simulated data set has left some ques-

tions as to whether or not the results of this experiment could
be improved further in terms of variability. Although this

roach affor ir mparison he prior r rch
Figure 7: Harmonic Mean represents the overall performance oi:pp Ola:jcb a_ Ot dedt.a dteCt Co.f ga slc') t(t)ht te p _0 ese_a;
the contrastive divergence learning (RBM) algorithm in relation to'* WOU!d D€ INtETESHNG 10 Se€ If doubling the training perio

both Baum-Welch (HMM), and Nae Bayes (ANN). would improve the results. Similarly, it may be possible to
train the RBM in a shorter amount of time by using a series
of similarly configured virtual machines and then sharing the
data between them over a network. One of the end goals
the ADF suggested the root cause was a network adaptgf oyr research is to build a network aware, self-healing
throughput/ speed change. This result was arguably correCtramework that is agnostic to its computing environment.
the adapter speed was indeed reduced to zero. ConS|der|ng.|.here are still other methodologies that should be com-

th? ?‘DF fha?h no s?m;:t)_lel datal o wotrhk with |I?d|cat|ng the pared to better understand their advantages and disadvan-
exis \I/?/%hof other pofgn Iat_pro emsl, tlﬁ re:;lzwats Surdp”s'tages in anomaly detection. More advanced types of neural
Ing. Vvith Tewer configuration samples the returned an, ovork—such as long short term memory networks and bio-

entir_ely incorrect root cause—the number of total PTOCESSEK;rectional recurrent neural networks (LSTMNSs, BiRNNS,
rllj{l/m?g t?]n Ehet sz\/stem?]a.rldh thubs thg alcc(;Jrgcg drotg)pted.t spectively). and other so-called ‘deep-belief’ networks,
o Tor this test. As such, 1t has been inciuded here, but wi epresent interesting avenues for exploration.

a normalised view that included only the tests we expected . .
y P It's important to note that WMI was not designed to pro-

to run, and with the outlier which included the test that hadVide the Kind of functionality leveraaed in this experiment
a fault outside of the local machine’s purview. y 9 P :

Lastly, as in the previous experiment, using fitness func—It does not have a primary key, nor a built-in mechanism

tions and a full virtual machine with live input allowed for for uniquely identifying rows of data—despite the fact that

a direct approach when evaluating the ADF's results. Asmterfacmg with WMI uses. WQL'.Th'S poses challenges
. . when trying to determine if new items have been added,
such, no pre-fabricated model needed to be provided—the L2 ;
o : , . or existing items have been removed—such as a physical
ADFs built its own expectations of the features behawoursdeviCe or software application. It is for this reason that the
so long as the fitness tests continued to pass. S . pplication.
dictionary with the unique identifier value was used. A re-
VI. CONCLUSION placement to WMI would provide substantial improvements
to the speed at which the data is gathered and compared,

This experiment successfully demonstrated that combin- . S .
P y and promote more routine analysis in similar scenarios.

ing fitness functions and RBMs it is possible autonomously Lastl ¢ th h ded i
detect faults and provide an accurate, ordered list of poten- astly, some ot the research avenues recommended in
ur previous work remain unexplored—including a live study

tial root causes. It also expanded upon prior research bgf th if-heali ¢ f ks i | |
demonstrating better overall performance and the ability to € sel-healing syslems frameworks In a large-scaie
mputing environment, self-provisioning fitness tests, and

predict a series of behaviours, but with the added caveats derstanding the diff in risk bet ised and
requiring more time to produce results from when the faylt!Naerstanding the ditierences in risk between supervised an
unsupervised management techniques.

was initially detected, and higher variability.

Although the results from this experiment were positive,
several questions remain unanswered—including whether or ACKNOWLEDGMENTS
not this approach would reduce operating costs in a large-
scale production environment, if using a larger data set Funding for this research was provided by the Scottish
would reduce variability, and if these approaches could bénformatics and Computer Science Alliance (SICSA).

Configuration Samples



(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

C. Schneider, A. Barker, and S. Dobson, “A survey of
self-healing systems frameworks,” Boftware Practice and
Experience Wiley, 2013.

S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, “Fulfilling [14]

the vision of autonomic computinglEEE Computervol. 43,
no. 1, pp. 35-41, January 2010.

H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and system&bmputing vol. 91, Issue: 1, pp.
43-73, 2010.

J. McCann and M. Huebscher, “Evaluation issues in auto-
nomic computing,” inGrid and Cooperatve Computing -
GCC 2004 Workshops Springer Berlin, 2004, vol. 3252,
pp. 597-608.

(15]

D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised [16]

behavior learning for predicting performance anomalies in
virtualized cloud systems,” ifProceedings of the 9th inter-
national conference on Autonomic computisgr. ICAC '12.
New York, NY, USA: ACM, 2012, pp. 181-190. [Online].
Available: http://doi.acm.org/10.1145/2371536.2371571

(17]

D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic [18]

models for self-healing distributed services,”Bioinspired
Models of Network, Information, and Computing Systesas
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer
Berlin Heidelberg, 2010, vol. 39, pp. 152-166.

[7]1 A. J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K. [19]

(8]

Mckinley, “Plato: a genetic algorithm approach to run-time
reconfiguration in autonomic computing system€Jluster
Computing vol. 14, no. 3, pp. 229-244, Sep. 2011.

O. Shehory, A Self-healing Approach to Designing and [20]

Deploying Complex, Distributed and Concurrent Software

Systemsser. Lecture Notes in Computer Science. Springer-
Verlag, 2007, vol. 4411, pp. 3-13. (21]
[9] V. Cardellini, E. Casalicchio, V. Grassi, S. lannucci,

[10]

[11]

[12]

F. Lo Presti, and R. Mirandola, “Moses: A framework
for gos driven runtime adaptation of service-oriented
systems,” IEEE Transactions on Software Engineering
vol. PP, no. 99, pp. 1-23, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5963694

G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A

(22]

(23]

self-healing framework for qos-aware web service composi{24]

tion via case-based reasoning,”\ifeb Technologies and Ap-
plications ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, vol. 7808, pp. 654-661.

D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “Sassy:
A framework for self-architecting service-oriented systems,”
Software, IEEEvol. 28, no. 6, pp. 78-85, 2011.

(26]

L. Rilling, “Vigne: Towards a self-healing grid operating
system,” inEuro-Par 2006 Parallel Processingser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg,
2006, vol. 4128, pp. 437-447.

[13] C. Schuler, R. Weber, H. Schuldt, and H. j. Schek, “Scalable

peer-to-peer process management - the osiris approach,” in
In: Proceedings of the 2 nd International Conference on Web
Services (ICWS'2004) San Diego, CA: IEEE Computer
Society, 2004, pp. 26-34, washington DC, USA.

N. Stojnic and H. Schuldt, “Osiris-sr: A safety ring for
self-healing distributed composite service execution Saft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop.on Zrich, Switzerland:
ACM, 2012, pp. 21-26, new York, NY.

Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-
dimensional root cause diagnosis via co-analysis,” in
Proceedings of the 9th international conference on
Autonomic computingser. ICAC '12. New York, NY,
USA: ACM, 2012, pp. 181-190. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371571

B. Garvin, M. Cohen, and M. Dwyer, ‘“Failure
avoidance in configurable systems through feature locality,”
vol. 7740, pp. 266-296, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36249-10

T. Kohonen, “The self-organizing mapProceedings of the
IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.

C. Schneider, A. Barker, and S. Dobson, “Autonomous fault
detection in self-healing systems: Comparing hidden markov
models and artificial neural networks,” iRroceedings of
International Workshop on Adaptive Self-tuning Computing
Systemsser. ADAPT '14. New York, NY, USA: ACM,
2014, pp. 24:24-24:31.

J. O. Kephart, “Autonomic computing: The first decade,” in
International Conference on Autonomic Computing<arl-
sruhe, Germany: ACM SIGARCH/USENIX, 2011, pp. 1-56,
new York, NY.

J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer vol. 36, Issue: 1, pp. 41-50, 2003.

J. O. Kephart and W. E. Walsh, “An artificial intelligence
perspective on autonomic computing policies.”  Yorktown
Heights, NY, USA: IEEE Computer Society, June 2004, pp.
3-12, washington, DC, USA.

M. Carreira-Perpinan and G. Hinton, “On contrastive di-
vergence learning,” 2002, department of Computer Science,
University of Toronto.

A. Kirillov, “Aforge.net framework,”
http://www.aforgenet.com/framework/members.html, 2013.

C. R. Souza, “Accord.net framework,” 2013, http://accord-
framework.net/.

25] A. Viterbi, “Error bounds for convolutional codes and an

asymptotically optimum decoding algorithmEEE Trans-
actions on Information Theoyryol. 13, no. 2, pp. 260-269,
April 1967.

B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature
locality: Can we leverage history to avoid failures during
reconfiguration?” inProceedings of the 8th Workshop on
Assurances for Self-adaptive Systeser. ASAS ‘11. New
York, NY, USA: ACM, 2011, pp. 24-33, szeged, Hungary.



