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ABSTRACT
Current tools for monitoring cloud systems are designed for
physical servers and are not intended to handle rapid elastic-
ity or dynamic behaviour while operating at scale. Though
current monitoring tools can be applied to small cloud sys-
tems, the volume of data and computational overhead asso-
ciated with their operation render them unsuitable for large
scale cloud deployments. The metrics obtained by current
solutions also lack a machine readable structure, limiting the
ability of both software and humans to interpret the data.
As cloud adoption continues, the scale and complexity of
cloud systems will present significant challenges to current
tools. This paper proposes a scalable distributed data col-
lection system which forms the basis of a cloud monitor-
ing system. Utilising technologies from the semantic web,
our architecture generates a machine readable overview of a
cloud system without the need for an additional dedicated
monitoring system. We present an exemplar implementation
of our architecture written using the Python programming
language and perform an evaluation demonstrating its abil-
ity to provide scalable data collection services fit for cloud
computing.
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General Terms
Cloud Computing, Semantic Computing
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1. INTRODUCTION
Prior to the advent of cloud computing, large scale sys-

tems were only available to sizeable institutions or through
volunteer computing. Since the popularisation of cloud com-
puting, previously unobtainable scalability has become avail-
able to all organisations and users via a utility model. Smaller
institutions and individuals can now deploy large scale sys-
tems by leveraging an Infrastructure as a Service (IaaS)
cloud for significantly less investment than required for phys-
ical servers.

A distributed system operating within a cloud expresses
a number of unique properties not found in systems based
on physical servers. Through cloud computing, a system
can change entirely in composition and function within a
single hour invalidating many past techniques for manag-
ing change. A technique which has migrated from physical
systems to cloud computing with little modification is mon-
itoring which remains pivotal but unchanged.

Systems monitoring is a critical function within any dis-
tributed system, allowing for the detection of failure, mis-
configuration and poor performance. Monitoring is espe-
cially critical for large distributed systems where events and
behaviours may not be as easily detected. Monitoring is con-
ventionally provided by an additional set of separate servers
which operate independently from the systems which they
monitor. Most current monitoring solutions require a set of
dedicated servers which either actively poll members of a
system for data, or has clients push data to it. This requires
a number of monitoring servers proportional to the number
of hosts and services being monitored and the analytics be-
ing performed [8]. When collecting and analysing a large
number of metrics, this makes monitoring a large scale sys-
tem extremely data intensive and extremely costly in terms
of the required hardware and bandwidth. The data require-
ments become a significant concern given the metered data
services of many cloud providers.

Despite the difficulties in monitoring large scale systems [10],
the same software tools used for monitoring physical sys-
tems are now extended to handle cloud systems. Moni-
toring a system composed of a fixed number of constantly
operational physical computers is a computationally inten-
sive task. Monitoring a system hosted on a cloud which is
prone to rapid changes in scale and composition presents
a significant challenge. As the size and complexity of sys-
tems deployed on a cloud increases the volume of monitor-
ing data and the rate of change in the system will put in-
creased strain on centralised client-server based monitoring
tools. For cloud adoption to continue uninhibited, new de-



centralised distributed monitoring tools are required to re-
place the current tools which are unfit to meet the demands
of the emerging generation of large scale cloud systems.

The difficulties of using software to monitor large dynamic
systems are compounded by the difficulties human adminis-
trators face in attempting to understand the composition of
cloud systems. A server running on physical hardware has a
unique identity based upon several factors: location, speci-
fication, manufacturer, configuration, domain name and so
forth. This allows for a localised view of a system when
a function or activity can be easily understood to occur
at a specific location. When virtual machines (VMs) are
deployed in a small number, humans can still understand
the purposes and interactions of individual VMs however
when deploying hundreds or thousands of VM instances it
becomes difficult to differentiate the purposes and activities
of two otherwise identical VMs. This phenomena reduces
the value of a low level view of a system. Furthermore,
as VMs within a single deployment are usually instantiated
from a very small number of images, the configuration and
resources of these hosts are identical. This further depreci-
ates the value of an individual VM and instead encourages
a more holistic, system wide view.

To obtain a holistic view requires the availability of in-
formation from the entire system. Obtaining of host and
network data is traditionally fulfilled by a monitoring ser-
vice, however the data obtained by current solutions lack any
machine readable structure limiting the value of the data.
While this limitation could be potentially overcome through
complex analytics, the lack of a highly scalable monitoring
solution able to handle rapid change significantly limits the
value of monitoring. To meet the needs of the emerging class
of large scale elastic cloud systems we propose a new class
of distributed data collection system. Based upon technolo-
gies from the semantic web, our proposed architecture is
a scalable peer-to-peer system which allows a large system
to be self describing without requiring a complex external
monitoring system.

2. MONITORING REQUIREMENTS
Examination of the challenges presented by large scale

cloud systems allows us to derive the set of requirements
which a large scale cloud monitoring service must meet in
order to function optimally. Our architecture aims to fulfil
each of these requirements.

Decentralised: systems which collect data at a single lo-
cation scale poorly, act as a bottleneck and as single
point of failure [2] and require greater bandwidth. This
is unacceptable for large scale cloud systems, instead
data collection must be a distributed process which
allows for superior scalability.

Location Aware: cloud computing has a considerable va-
riety of costs - both in terms of capital expenditure
and in terms of performance. Data transfer between
different VMs hosted in different regions can incur sig-
nificant financial costs, especially when dealing with
big data. Monitoring data will eventually be sent out-
side of the cloud in order to be accessed by admin-
istrators. In systems hosted between multiple clouds
there will be both inter and intra cloud communica-
tion. Both these cases can result in poor performance
due to latency and cost due to metered data. Latency

which presents a significant problem for application
running on the cloud [4], including monitoring. When
monitoring physical servers a host can be but a few
hops away, cloud computing gives no such guarantees.
This will adversely affect any monitoring system which
polls according to a given schedule and otherwise pro-
duce delay. A location aware system can significantly
outperform a system which is not location aware [6]
and reduce the costs inherently associated with cloud
computing. Hence a cloud monitoring system must
be aware of the location of VMs and collect data in a
manner which minimizes delay and the costs of moving
data.

Fault Tolerant: failure is a significant issue in any dis-
tributed system, however it is especially noteworthy
in cloud computing as all VMs are transient. VMs
can be terminated by a user or by software and give
no indication as to their expected availability. Cur-
rent monitoring is performed based upon the idea that
servers should be permanently available. As such cur-
rent monitoring systems will report a failure and await
the return of the failed server. A cloud monitoring sys-
tem must be aware of failure, and of VM termination
and account for it appropriately. Crucially such failure
must not impede the operation of data collection and
monitoring.

Autonomic: having to configure a live VM, even a trivial
configuration, is a significant overhead when dealing
with large numbers of VMs. Current monitoring sys-
tems require both a central server and the monitored
VM to be configured before monitoring can begin. Ex-
isting monitoring solutions geared towards cloud com-
puting attempt to solve this problem by using auto-
mated scripts to perform configuration. This however
results in monitoring being configured with generic set-
tings which may be non ideal and requires additional
software which needs updated and maintained in ad-
dition to the monitoring software. This method may
be appropriate for small scale systems where only sim-
ple metrics are required but this method is insufficient
for larger systems. Software based on the now obso-
lete paradigm of static system deployment is unsuit-
able for large dynamic systems [11]. Monitoring large
scale cloud systems requires an autonomic monitoring
system, that post VM instantiation requires no human
configuration.

Holistic: large scale cloud systems necessitate a macro level
view pertaining to the relationships and interactions
of components. Large scale systems express complex
emergent behaviour which cannot be easily described
by independent metrics obtained from throughout the
system. Due to the presence of identical VMs in vast
quantities the value of individual metrics from a single
point in a cloud system is minimal. Monitoring data
from a large scale cloud system needs to be considered
within the greater context for it to be valuable. This
requires contextual metadata for each datum collected
by a monitoring system and a means to quantify the
relationships and behaviours arising as a result of in-
dividual values.



"Server 1" rdf:type server:server

"Server 1" server:runs "DB Server"

"Server 2" rdf:type server:server

"Server 2" server:runs "Web Server"

"Server 2" server:runs server:JVM

"DB Server" rdf:type db:MySQL

"DB Server" db:stores "table A"

"DB Server" db:stores "table B"

"Web Server" rdf:type server:Apache

"Web Server" web:serves "Web App"

"Web App" rdf:type web:app

"Web App" db:writes "table B"

"job 1" rdf:type cron:job

"job 1" db:sanitizes "table A"

Figure 1: Two servers represented using the Terse
RDF Triple Language (TURTLE)

Selective: Fundamental to monitoring is the collection of
the noteworthy state of a host and related network seg-
ments, however with cloud VMs, much of the state is
identical and represents little interest to the end user.
The homogeneity of VMs instantiated from the same
image results in few factors of differentiation. A cloud
monitoring system need capture only the state of a VM
which is unique to that VM and other factors which
are constant in all VMs instantiated from the same
image can be discarded.

In order to meet this set of cloud monitoring requirements
we propose a new distributed monitoring system based upon
semantically linked data. By doing so we provide a basis for
the monitoring and management of large scale cloud sys-
tems which are becoming increasingly prevalent in business
and academia. As the scale of cloud systems increases, the
ability for humans to manage individual components is di-
minished. Human administrators can configure a finite num-
ber of components and cannot keep up with a rapid rate of
change in system composition. This necessitates the need
for automated configuration and autonomic adaptation and
fault correction. This cannot be achieved easily without
data providing a holistic view of the large scale system, the
data which our architecture attempts to provide.

3. SYSTEM ARCHITECTURE

3.1 Semantic Data Collection
Unlike current monitoring solutions, our solution does not

use a database or flat files to represent data. Instead our
solution is based upon the Resource Description Format
(RDF), a W3C recommendation which defines a method
for modelling semantic metadata [17]. RDF allows state-
ments based upon a subject-predicate-object expressions to
describe a resource. The vocabulary used by RDF is exten-
sible via additional schemas [3], allowing for comprehensive
ontologies representing any problem domain to be gener-
ated. The key benefit of using RDF is that it produces a

datastore of machine-readable information which can be ac-
cessed, analysed and interpreted without the need for signif-
icant configuration and interaction. Figure 1 shows a RDF
representation of a group of servers using the Turtle lan-
guage [18] which can be easily parsed by software. Figure 2
shows the same RDF data modelled visually in a human
readable fashion using a relational diagram. The human
and machine readable properties of RDF which makes it ex-
tremely valuable for monitoring purposes.

Semantic data contains explicit definitions of each datum
and the relationships between data. Any software with ac-
cess to the same RDF vocabulary that is used to define the
data can formulate complex queries to establish how data is
related and the importance of each value. This key benefit
allows semantic data to be autonomously processed while
traditional monitoring and data collection systems use rela-
tional databases which are not machine readable and limit
their autonomic applications. In addition to being machine
readable, semantic data also maps well to natural language.
This allows for a semantic datastore to be parsed and re-
turned to a user as a textual description of a system or to
produce readable activity logs and allows for natural lan-
guage queries of a system. It is therefore the ideal basis for
a data collection system which serves to fulfil the previously
defined requirements for cloud monitoring.

3.2 Components
Our architecture is based upon a series of nodes ordered

within a peer to peer structure. A node is defined as a
a cloud VM running the architecture’s software. Figure 4
illustrates the interactions of each of the components present
within a single node. Each node operates the following:

• Triplestore: typical monitoring and data collection
services rely on centralised relational databases to store
data obtained from a set of hosts. This limits scala-
bility and results in a significant volume of data trans-
fer. Instead of a relational database our architecture
uses a series of Triplestores [12] as its storage system.
A Triplestore is a datastore optimised for the stor-
age and retrieval of triples, such as RDF statements.
Each node operates its own triplestore populated with
data collected regarding itself and possibly other nodes
within the architecture.

• Data Collection Daemon: each node collects data
based upon a schema provided in the VM’s image.
Data is collected both locally, and dependant upon a
node’s location within the architecture, from the triple-
store of other nodes. The pertinent services and vari-
ables are monitored and upon a noteworthy change
(with pertinence and noteworthiness being described
via the schema) the value is written to the triplestore.
Similarly, dependant upon its role in the architecture,
a node may at a schema defined interval collect data
from other nodes. Local data collection is facilitated
through a series of Open Source libraries and struc-
tured according to a set of RDF vocabularies before
being committed to the triplestore.

• Query Interface: each node’s triplestore is accessi-
ble via a SPARQL Protocol and RDF Query Language
(SPARQL) query interface. SPARQL [16] is an RDF
query language which allows the unambiguous query-
ing of semantic data. Other nodes and external agents



Figure 2: A more human readable diagram representing the same data and generated from the RDF in
Figure 1

can access the architecture via the query interface to
obtain the available data.

• Maintenance: each node runs a component which
manages it’s behaviour and location within the archi-
tecture and communicates with other nodes.

3.3 Operation
Prior to deployment of the architecture a VM image is

created containing the necessary software its intended pur-
pose and the node software. Deployment of the architecture
begins upon deployment of a VM or set of virtual machines.
The architecture is intended to operate over hundreds and
greater numbers of VMs, while it will function with smaller
numbers this is not its primary goal. For this description,
consider several hundred VMs being instantiated. The first
four of the VMs to be instantiated attempt to bootstrap
themselves. The bootstrap service may be DNS, a web
service, an online storage service or other resource. Upon
failing to find an available bootstrap node offered by the
bootstrap service, the first nodes will register themselves as
bootstrap nodes with the chosen service. The nodes which
have become a bootstrap node then form a bidirectional ring
network between themselves.

3.3.1 Bootstrapping
Once the bootstrap nodes are available, the next VMs

which are instantiated will connect to one of the nodes re-
turned by the bootstrap service. Upon connecting to a boot-
strap node the node will form a distributed maximal binary
heap, whereby the initial bootstrap nodes serve as the root
of the heap and all successive nodes, the children. The value
used for ordering each heap is a integer value representing a
prediction of longevity derived from an analysis of data col-
lected at each node. Each node will periodically reevaluate
its precoded availability based upon newly collected data.
Upon a child deriving a greater prediction of availability
than its parent a swap will be performed. Hence the node
with the greatest prediction of uptime will ascend to the
root of the heap, while nodes predicted to be available for
less time will descent to the leaves. Upon a node replacing
the root node it will become the new root and part of the
ring and will assume the neighbours of the previous node.

While all nodes instantiated to perform a set task are likely
to have identical availability predictions this does not affect
the architecture. It is envisioned that our architecture will
operate over systems with frequent changes in composition
due to VMs being instantiated and terminated and where
there may be significant variation in predicted availability.
While prediction of longevity is the default value used for
ordering, additional or alternative factors can be used, in-
cluding system load.

3.3.2 Balancing Heaps To Balance Load
When a node is bootstrapped it is sent to the smallest

heap in an attempt to keep each heap balanced. A heap
may become disproportionally smaller than other heaps due
to a large number of VMs being terminated. In this case,
following an agreement between ring nodes, the other heaps
will reassign nodes to the smaller heap. Should the overall
number of nodes exceed the number of nodes within each
heap exceed the number of by a factor defined by the end
user, the number of ring nodes will be doubled and new
heaps created at each. The immediate child with the great-
est longevity prediction of each ring node will be made a
new ring node and the heaps will be balanced between each
other. A similar process or regression will occur if the num-
ber of children are significantly less than the number of root
nodes. This ensures that no single root node is burdened by
a substantial heap and ensure that there is no unnecessary
data transfer due to an unnecessarily large number of heaps.

3.3.3 Data Propagation
Each node collects data regarding itself based upon its

predefined XML schema. Each node also assimilates the
triplestore of each of its children. Hence, every node stores
the data of every child of greater depth within its branch.
The root of each heap therefore stores the cumulative data
of the entire heap. The roots/ring nodes serve as the entry
point to external agents. The same method for bootstrap-
ping nodes is used to locate ring nodes in order to perform a
query. A SPARQL query is created either by hand or more
likely by automated tools and sent to a ring node. The
ring node queries its triplestore and forwards the query to
each of its neighbours with forward the query in turn. Each



Figure 3: Multiple data collection heaps distributed across clouds for optimal performance and reduction in
costs and overhead

Figure 4: The components operating within a node

ring node returns the result of the query to the node issuing
the query which in turn returns the combined results to the
client.

3.3.4 Failure
Failure and the termination of VMs is inevitable in a large

scale distributed system. By ordering components based
upon a prediction of longevity, the impact of failure should
be minimized by locating failure likely VMs to the leaves of
each heap. Should however the predictor of longevity prove
inaccurate, nodes which are higher in the heap may be ter-
minated, rendering entire subtrees disjoint. In such a case
the roots of the two new disjoint heaps will rejoin the heap
from which they were disconnected at the point closest to
their previous location. As each node stores the collective
ontology for each of its children the amount of data propa-
gation required upon reconnecting is minimal or even zero
depending upon the next free location. Only the roots of
the disjointed heap are aware of the failure, children within
each of the heaps are agnostic to the failure and continue
operating as expected.

Having entire subtrees disconnected from the system is

Figure 5: Policy in the event of a root node failure,
large subtrees advance to the ring level

problematic and prevents coherent monitoring from occur-
ring while the subtree remains disjoint. Should a node close
to the root (again defined by the user) or the root itself fail
in lieu of disconnecting large subtrees those disjoint subtrees
can be elevated to the ring becoming two entirely new heaps
and removing any need for rebuilding the tree. As shown in
Figure 3 this maintains consistent trees when encountering
failure. This can be set as the default behaviour for han-
dling failure however overall performance and consistency is
reduced when the ring frequently changes.

This architecture therefore collects an ontology represent-
ing a distributed system through a joint tree and ring struc-
ture. This allows a system to be self descriptive without the
need for an external monitoring system.

4. USE CASES
Unlike a traditional monitoring system, our architecture

simply facilitates data collection and at present does not
serve to detect faults and alert administrators of changes
in state. It could be modified to do so, however this is
not the most interesting application of our architecture. In-
stead this architecture serves to provide a holistic view of a
large system as a whole and ideally disregards values which
are identical between VMs or otherwise irrelevant. In ad-
dition to serving as a platform for future research this high
level viewpoint has number of use-cases which a conventional
monitoring system cannot easily achieve either due to scale,
complexity or limitations in data representation.



4.1 Autonomic Computing
Given the scale of many systems deployed on a cloud man-

aging individual VMs is a difficult, tedious and time con-
suming process. This has given rise to significant interest in
autonomic computing to reduce the management overhead
associated with cloud computing. Of the four functional
areas of autonomic computing as defined by IBM [5] our ar-
chitecture provides the greatest benefit to self-optimisation.
As stated by IBM, a precursor to autonomic optimisation
is autonomic monitoring. A system must be able to collect
data regarding itself in order for it to be able to perform any
optimisation based upon the newly acquired knowledge [2].
Our architecture provides an ideal framework for autonomic
data collection in large scale systems. Once a VM image
has been created with all the necessary software, our ar-
chitecture requires no further interaction and will continue
to operate until there are no longer any active VMs. This
allows our architecture to serves as a basis for a number
of different autonomic computing functions based upon the
machine readable data which it makes available.

Conventional monitoring tools capture data at the micro
level and fail to capture the complex emergent properties
which are only evident at the macro scale. Distributed sys-
tems seldom operate in a vacuum and events occurring in one
part of the system often have direct implications on events
in a separate location. While these events could be detected
by examining multiple sets of metrics for different hosts, by
instead querying a set of machine readable semantics an au-
tonomic process can examine a distributed system with far
greater ease. While the metrics may hold significance for a
human, they hold no explicit meaning for an autonomic sys-
tem and do not easily allow for automated decisions to be
made. Semantically structured data however has explicitly
defined significance and relationships to other data which
allows the relevance and importance of the available data to
be considered. This is ideal for self-optimising systems as it
allows the direct affect of any optimisation to be examined
and its effectiveness determined.

4.2 Identification of Redundancy and Volun-
teer Computing

Our architecture provides an ideal facility to identify un-
used resources. VMs and storage resources are often al-
located for a set purpose but are not used to capacity in
fulfilling that purpose. Similarly, users within an organisa-
tion may deploy VMs which replicate existing functionality
which was otherwise not known of. Our architecture allows
the identification of unused resources and the location of re-
sources matching a specific requirement which reduces the
likelihood of replicating existing resources. Should an or-
ganisation deploy our architecture it would be feasible to
locate redundancy, replication of function and unused ca-
pacity and either terminate these resources or reuse these
resources for a useful purpose. As volunteer computing sys-
tems are usually set to operate when there are free resources
or the system is idle the available resources within a systems
can by quickly identified using our architecture in order to
quickly dispatch a set of volunteer jobs. A key bottleneck in
volunteer computing is scheduling and job distribution [1]
which limit how many jobs can be run and job throughput.
With the availability of a holistic view of a system, volun-
teer computing jobs can be executed and terminated based
upon events throughout the system. For example, should

an application’s frontend become idle, useful work could be
scheduled on the back end as no work is expected. With our
architecture, obtaining this information is far easier than
with a non semantic system.

4.3 System Modelling
Unlike conventional monitoring systems which simply ob-

tain metrics, our architecture is capable of representing a
system semantically. The collected data can be visualised
and be analysed in order to facilitate a post hoc investiga-
tion of the previously monitored system and the data can be
modified to investigate potential optimisations and reconfig-
urations without requiring a live system. This has a number
of other uses including aiding in postmortem diagnosis of
failure, security breaches or other significant problems and
can aid in the formal verification of system behaviour.

5. EXISTING WORK
There are a number of monitoring systems which are ca-

pable of collecting data from large scale systems. These can
be broadly classified into systems which push data from its
point of collection and those which pull data and into sys-
tems which are fully centralised and those which are more
decentralised. Nagios represents a relatively centralised sys-
tem which pulls data from each monitored component which
Ganglia is more decentralised and pushes data from its point
of collection.

5.1 Nagios
Nagios [9] is the de facto standard Open Source moni-

toring system. With an extensive community and large user
base Nagios has an comprehensive plugin library affording it
support for monitoring numerous applications, devices and
configurations. Initially conceived as a centralised moni-
toring tool, current versions of Nagios are capable of some
degree of distributed monitoring. Nagios supports two ar-
chitectures for distributed monitoring:

• Offloading data collection and verification duties to a
series of slave nodes to reduce the load on the cen-
tralised master. The slaves contain no configuration
and simply execute the orders of the master. This al-
lows for the instantiation of additional slaves to handle
load. The slaves however do not perform complex func-
tions such as data analysis or graphing which are per-
formed by the master. Thus, this architecture suffers
from a central bottleneck and point of failure which
limits its scalability.

• An alternative architecture allows for monitoring func-
tions to be divided between multiple monitoring servers.
Each server is provided a portion of the infrastructure
to monitor and performs all data collection, checks and
analysis for that portion. A centralised front end then
aggregates data from each of the monitoring servers.

While distributed, these architectures rely on additional servers
to monitor a given infrastructure. For monitoring transient
cloud VMs this serves as a significant overhead both in terms
of cost and configuration. Owing to its heritage as a fully
centralised monitoring solution Nagios also suffers from a
series of limitations which reduce its viability as monitoring
solution of large highly dynamic systems:



• Nagios follows a polling model and will poll moni-
tored resources according to an automatically gener-
ated schedule. A polling schedule is generated to mini-
mize the overall load that the monitoring server incurs
and to ensure the balanced polling of each resource.
The schedule will be dynamically altered based on fail-
ure, delay or other unexpected results. Rapid changes
in scheduling can result in excessive work, increased
delay between pollings and in the extreme case; in-
ability for the monitoring server to keep pace with the
schedule. When monitoring resources which are prone
to sudden change, this presents a significant issue.

• Nagios is typically configured by an administrator defin-
ing a set of configuration files which describe the re-
sources, servers and devices which are to be monitored.
This process is static and limits the ability to monitor
dynamic systems. There are multiple solutions to this
problem provided by third party plugins and services
operating in addition to Nagios. The most solution
is to use a configuration management service, such as
Puppet, to automatically generate and apply new con-
figuration dynamically. This requires additional man-
agement, configuration and software which presents
unnecessary overhead and complexity.

In addition to the potential architectural problems, Nagios
uses either flat files or an SQL database as a storage medium.
This provides users and applications with unlinked and rela-
tively unstructured data which limits the inherent usefulness
of the data. While many of the issues pertaining to monitor-
ing large dynamic systems with Nagios could be overcome
through plugins and significant modification its problems
stem from its inception as a centralised solution. A fully de-
centralised architecture is necessary for the challenges pre-
sented by cloud computing which at present Nagios cannot
provide.

5.2 Ganglia
Ganglia [7] [14] is a scalable system monitor intended for

high performance systems. Unlike Nagios it is highly decen-
tralised and was from the outset designed to monitor large
scale systems. Each server being monitored by Ganglia runs
a data collection daemon which announces changes in state
to other members of a defined group. Each node thus main-
tains a representation of the entire group which is made
accessible via an XML based query interface. Nodes within
a group, order themselves within a hierarchy to propagate
data and respond to queries. The data pertaining to each
group is federated via a meta daemon. A web based front
end then makes available the federated representation of the
entire system. Ganglia requires only a minimum set of ad-
ditional servers to collect data and present a web interface
which most of the functionality occurring on the systems
being monitored.

Originating from the domain of high performance comput-
ing, Ganglia primarily obtains low level metrics including
load and resource usage. As such, it is not intended to cap-
ture higher level state pertaining to applications and system
behaviour. The data which is captured is represented either
using XDR or XML, which lacks the inherent structure and
value of semantically linked data.

While Ganglia does offer an architecture which is well
suited to disseminating and collecting data in a large scale

system it was designed intended to do so within an HPC en-
vironment. High performance computing is typically done
within one, or relatively few locations and has a dedicated
high speed network. Cloud computing however operates ex-
tensively over multiple separate data centers, providers and
connections. This heterogeneous network environment is not
the preferred environment for Ganglia and requires signif-
icant separation and organisation of groups of monitored
systems to ensure optimal operation.

Ganglia also fails to make any provision for highly dy-
namic behaviour. The HPC environments which Ganglia
was designed to monitor typically do not exhibit dynamic
behaviour unlike those involved with cloud computing. While
capable of some dynamic behaviour within a group, Ganglia
requires a significant amount of manual configuration to cre-
ate a new group. This again makes Ganglia non ideal for
monitoring highly dynamic systems.

6. EVALUATION

6.1 Prototype
This architecture is implemented in a prototype devel-

oped using Python 2.7. The prototype, a product of rapid
application development, consists of four separate python
programs:

The Node: responsible for managing location and commu-
nication within the architecture

Data Collection: using standard UNIX tools for collect-
ing system data it populates a datafile which the node
propagates

Bootstrap Service: a service which allows nodes to regis-
ter themselves as a ring node and for clients and new
nodes to locate ring nodes

Client: a simple command line client which can be used to
query a node

6.2 Evaluation Methodology
To evaluate our architecture we provide an empirical com-

parison against Ganglia and Nagios to demonstrate that our
architecture is better suited to cloud monitoring and will re-
sult in traffic and overhead and hence offer superior perfor-
mance and reduced financial costs. Our evaluation is based
on four premises:

1. Collected monitoring data will eventually be sent out
with the cloud to an end user.

2. Monitoring systems will be configured with their de-
fault and most basic settings. This is typical of moni-
toring which is configured by automated scripting and
represents the unlikelihood of complex configuration
being performed to large numbers of VMs en mass.

3. VMs are instantiated from the same image.

4. Bandwidth is a metered resource (as is typical in most
IaaS clouds).

Our evaluation was conducted using the St Andrews Cloud
Computing Colaboratory Cloud [15], a private cloud based
upon Eucalyptus [13]. Each monitoring system was deployed



over 25 VMs and one external physical server. 25 VMs pro-
vides a sufficient sample size to indicate traffic and network
behaviors however is insufficient to produce large volumes
of data, future evaluation will consider far greater numbers
of VMs. The physical server serves to represent the host
which eventually accumulates data from the VMs within
the cloud. Conceptually this could be a monitoring server,
storage server or a user’s computer. Each configuration at-
tempted to follow the de facto configuration that is most
frequently found in real world use, in each case the configu-
ration entailed:

Nagios: 25 VMs running the Nagios Remote Plugin Execu-
tor and one external server which polls NPRE on each
VM.

Ganglia: 25 VMs running gmond to perform monitoring
functions and the physical server running gmetad to
obtain data from each gmond instance and the Gan-
glia Front End which obtains the federated data from
gmetad and charts the data.

Our Architecture: 25 VMs each running the node soft-
ware and one external client executing queries.

Each VM image was based on CentOS 5.6 and hosted a sim-
ple LAMP server and ran Wordpress which was subjected to
minor artificial load using the Apache JMeter load testing
tool. Each monitoring tool collected the same data: CPU
load, memory usage, disk usage and the number of processes
used. The bandwidth used by monitoring functions was col-
lected using ntop. Monitoring traffic is potentially costly and
a key criteria of cloud monitoring is behaviour with reduces
both performance and financial costs. While each monitor-
ing solution collects a vast array of different data, our tests
attempt to collect the most basic metrics which all three
solutions collect and store in almost identical ways. Each
of the three systems can be configured to collect substantial
volumes of additional data, however the exact nature of the
data varies as does the manner in which data is collected,
represented and transmitted vary considerably preventing
any direct comparison. While these metrics will result in in-
substantial volumes of traffic the degree of overhead which
is required to acquire these values will be indicative of the
degree of overhead which will be encountered in the case
of high volumes of data. By requiring additional dedicated
monitoring servers which collect data at a central point (or
set of centralised points) Ganglia and Nagios will inevitably
require greater bandwidth to communicate data to those
servers as opposed to our architecture which does not for-
ward data to beyond its composite members. This proof
of concept demonstrates that for large scale cloud systems
centralised monitoring systems are inferior and will result in
significant communication between and out with clouds with
will impact significant performance penalties and potentially
costs.

6.3 Results

6.3.1 Nagios
The average traffic produced by Nagios per VM per hour

was 51.23 Kilobytes. In addition to the traffic sent from the
VM to the monitoring server, the monitoring server sent on
average 69.1 Kilobytes to each VM per hour. The traffic

sent to the VM primarily consisted of ICMP and SSH traf-
fic which represents Nagios performing checks to determine
availability and to perform a remote login to obtain data
from the VM. Traffic sent from outside a cloud to a cloud
virtual machine is not charged for by any IaaS provider and
as such is not a significant limiting factor. The checks which
were performed by Nagios represent the most basic and the
default set of service checks. In order to obtain the four met-
rics, which are under a Kilobyte for an hours worth of data,
Nagios imparts a significant overhead. This overhead is not
specific to these four metrics and represents the same over-
head which is present with all Nagios monitoring functions.
In a real world context, Nagios will perform a far wider range
of checks and obtain a far greater number of metrics and re-
main encumbered by the same degree overhead. While the
traffic shown here is trivial in size, the volume of overhead
is significant and is over 95% the size of the collected data.
This level of overhead in unacceptable for a cloud computing
monitoring system and would inevitably result in increased
costs.

6.3.2 Ganglia
Similar to Nagios, Ganglia produces extensive overhead

when collecting the four metrics. Ganglia produces 169.2
Kilobytes of traffic in its attempts to obtain the four met-
rics. This is again unacceptably high overhead to obtain
small volumes of data when bandwidth is a metered ser-
vice. Unlike Nagios, Ganglia pushes all of the collected data
from client to server and as such all traffic Ganglia produces
is traffic which leaves the cloud. This behaviour results in
excessive outbound traffic which when is proportionally far
greater than the data which is of value.

6.3.3 Prototype Implementation
Unlike for Ganglia and Nagios, the value which each of

the graphs show is not for the data from each host. As only
a root node responds to queries the values shown represent
the bandwidth required to transmit the entire set of values
for every node. Thus the prototype implementation on av-
erage requires 26 Kilobytes of bandwidth to return the data
for every node. Therefore the prototype requires less band-
width to transmit every metric than Ganglia and Nagios
require to transmit a single VM’s metrics. This is in part
aided by data being transmitted to the client with very little
overhead but also in part due to the maintaining of state.
Each request issued by the client returns only the metrics
which have changed since the last query. This behaviour can
be seen in figure 6 where there are peaks in bandwidth use
which represents significant changes in state meriting addi-
tional bandwidth use. Nagios and Ganglia however main-
tain no state and retransmit value even if there has been
no change. This minimum of overhead allows for an entire
representation of a set of value for an entire system with
very little wasted bandwidth making it highly efficient for
collecting data from a IaaS cloud.

6.4 Discussion
The results clearly show that our prototype is by far the

most efficient of the three monitoring systems with regards
to bandwidth usage. Both Nagios and Ganglia require a pro-
portionally large amount of bandwidth to collect four small
values. When this scales to significant volumes of data col-
lection at faster frequencies the volume of data cause due to



Figure 6: Average Monitoring System Bandwidth
Usage Per Hour Per Host

Figure 7: Monitoring System Bandwidth Usage
Over 12 Hour Period

this overhead will be unacceptable for large scale cloud mon-
itoring purposes. The prototype is sufficiently optimised for
data transfer on the cloud such that it is able to represent
the entire system’s metrics in less data than the other two
monitoring systems require for acquiring a single VMs met-
rics. This suggests purely from a data transfer prospective
that our prototype implementation is a superior option for
cloud based data collection. Notably during the setup of this
evaluation our prototype required a minimum of configura-
tion. Other than creating the VM image, setting the loca-
tion of the bootstrap service and instantiating the VMs, no
human interaction was required. Nagios required a separate
definition on the server for each node and a configuration
file specifying which metrics to collect and each client re-
quired configuration to allow the metrics to be obtained by
the server. Ganglia, while requiring less configuration, still
required configuration to locate data sources and to provide
each data source with an identity. This was an incredibly
time consuming activity, and while most of this work could
be scripted it still presents unnecessary complexity and ef-
fort which is unacceptable for a large scale cloud system.

7. FUTURE WORK

7.1 Longevity Prediction
The ordering of heaps within the architecture is based

upon a prediction of VM longevity. This prediction is cur-
rently based upon system load.. The working assumption of
the prediction is that a highly loaded system (a further as-
sumption is made that a loaded system is performing mean-
ingful work) will continue to operate. Thus if a system is
idle it is considered to be more likely to be terminated. This
naive assumption does not necessarily hold true for all cases
and can in some cases be detrimental to system performance
as higher loaded hosts are put under further load. This sim-
ple prediction algorithm is to be replaced with an algorithm
which considers multiple factors and performs a more com-
plex analysis in order to improve accuracy.

7.2 Location Awareness
In our current implementation of the architecture, nodes

are assigned to the smallest heap upon connection. This is
a naive behaviour which can create suboptimal heaps where
nodes are logically or physically distant. Location is espe-
cially significant in cloud computing as costs can be incurred
for the transmission of data out with a data center of cloud
provider. To mitigate the costs and latencies associated with
distance nodes should be assigned a location within the ar-
chitecture based upon factors relating to it’s location. Con-
ceptually this would allow for a heap containing nodes which
are hosted by a single cloud provider, hosted within the same
data center or are logically in close proximity with regards
to an application or service.

7.3 Reduction of Load on Root Nodes
Root nodes are responsible for significant data collection

and storage functions. In a system where every node is
highly loaded it is unlikely that any node will have the re-
quired capacity to act as an efficient root node. This can
be mitigated by increasing the number of heaps within the
system to reduce the size of each heap, however this does
not entirely eliminate the problem. To significantly improve



root node performance a form of load balancing strategy,
where by the root of a heap is not a single node is required.
While maintaining the conceptual architecture, having mul-
tiple nodes share the responsibilities of being a root node for
a single heap minimizes the data collection duties of each
node.

8. CONCLUSIONS
The proposed architecture exhibits promising features which

make it applicable for a wide range of purposes in large scale
dynamic systems. While current monitoring infrastructures
require significant additional resources, configuration and
management our architecture operates with a minimal of
human involvement over the existing infrastructure. The
semantic based holistic view it provides has a number of
potential future applications which will be further investi-
gation upon. As the scale, complexity and level of dynamic
behaviors in cloud systems increase the ideas expressed in
our architecture will become increasingly relevant.
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