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Abstract —As the number of services and the size of data involved in
workflows increases, centralised orchestration techniques are reaching
the limits of scalability. When relying on web services without third-party
data transfer, a standard orchestration model needs to pass all data
through a centralised engine, which results in unnecessary data transfer
and the engine to become a bottleneck to the execution of a workflow.

As a solution, this paper presents and evaluates Circulate, an al-
ternative service-oriented architecture which facilitates an orchestration
model of central control in combination with a choreography model of
optimised distributed data transport. Extensive performance analysis
through the PlanetLab framework is conducted on a Web service-
based implementation over a range of Internet-scale configurations
which mirror scientific workflow environments. Performance analysis
concludes that our architecture’s optimised model of data transport
speeds up the execution time of workflows, consistently outperforms
standard orchestration and scales with data and node size. Further-
more, Circulate is a less-intrusive solution as individual services do not
have to be reconfigured in order to take part in a workflow.

Index Terms —Service-oriented architecture, orchestration, choreogra-
phy, workflow optimisation.

1 INTRODUCTION

Many problems at the forefront of science, engineering
and medicine require the integration of large-scale data
and computing. The majority of these data sets are phys-
ically distributed from one another, owned and main-
tained by different institutions, scattered throughout the
globe [15]. Scientists and engineers require the ability to
access, compose and process these distributed data sets
in order to discover correlations, enable decision making
and ultimately progress scientific discovery.

In order to integrate software and data, academia
and industry have gravitated towards service-oriented
architectures. Service-oriented architectures are an ar-
chitectural paradigm for building software applications
from a number of loosely coupled distributed services.
This paradigm has seen wide spread adoption through
the Web services approach, which has a suite of simple
standards (e.g., XML, WSDL and SOAP) to facilitate
interoperability.
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These core standards do not provide the rich be-
havioural detail necessary to describe the role an indi-
vidual service plays as part of a larger, more complex
collaboration. Co-ordination of services is often achieved
through the use of workflow technologies. As defined by
the Workflow Management Coalition [16], a workflow
is the automation of a business process, in whole or
part, during which documents, information or tasks are
passed from one participant (a resource either human
or machine) to another for action, according to a set of
procedural rules. Workflow is usually specified from the
view of a single participant using centralised orchestration
or from a global perspective using decentralised choreog-
raphy.

Orchestration languages explicitly describe the interac-
tions between services by identifying messages, branch-
ing logic and invocation sequences. Orchestrations are
described from the view of a single participant, which
can be another service. Therefore a central process al-
ways acts as a controller to the involved services. The
vast majority of workflow tools are based on orches-
trating services through a centralised workflow engine:
the Business Process Execution Language (BPEL) [29]
is the current de-facto standard orchestration language.
Workflow tools based on a centralised enactment engine
can easily become a performance bottleneck for service-
oriented workflows: all data are routed via the workflow
engine, these data consume network bandwidth and
overwhelm the central engine which becomes a bottle-
neck to the execution of a workflow. Instead, a solution
is desired that permits data output from one service to
be forwarded directly to where it is needed at the next
service in a workflow.

Choreography on the other hand is more collaborative
in nature. A service choreography is a description of
the externally observable peer-to-peer interactions that
exist between services, therefore choreography does not
typically rely on a central co-ordinator. Refer to [3] for
a summary of the differences. By adopting a choreog-
raphy model, the output of a service invocation can be
passed directly to where it is required, as input to the
next service in the workflow; not through a centralised
workflow engine as is the case with orchestration. How-
ever, although optimal in terms of data transfer, in
practice, the design process and execution infrastructure
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for service choreography models are inherently much
more complex than orchestration. Decentralised control
brings a new set of problems, which are the result of
message passing between asynchronous distributed and
concurrent processes. Furthermore, current choreogra-
phy techniques are invasive, in that each individual
service needs to be re-engineered in order to take part
in a choreography. There are relatively few decentralised
choreography languages and even fewer implementa-
tions (discussed further in Section 8); the most preva-
lent being the Web Services Choreography Description
Language (WS-CDL) [20].

This paper presents and evaluates the Circulate archi-
tecture, which sits in between pure orchestration (com-
pletely centralised) and pure choreography (completely
decentralised). This centralised control flow, distributed
data flow model maintains the robustness and simplicity
of centralised orchestration but facilities choreography
by allowing services to transfer data amongst them-
selves, without the complications associated with mod-
elling and deploying service choreographies. The Circu-
late architecture reduces data transfer between services
(which don’t contain functionality for third-party data
transfer), which in turn speeds up the execution time of
workflows and removes the bottlenecks associated with
centralised orchestration.

1.1 Paper Contributions

This paper makes the following core contributions:

• Hybrid architecture: Circulate is a hybrid between
orchestration and choreography techniques: this model
maintains the robustness and simplicity of centralised or-
chestration but facilities choreography by allowing Web
services to transfer data amongst themselves. Impor-
tantly, the Circulate architecture is a general architecture
and can therefore be implemented using different tech-
nologies and integrated into existing systems. However
in this paper we will focus on an implementation based
on Web services, which is used as the basis for our
Internet-scale evaluation.
• Internet-scale evaluation: By avoiding the need to

pass large quantities of intermediate data through a cen-
tralised server, we demonstrate through Internet-scale
experimentation how the Circulate architecture reduces
data transfer and therefore speeds up the execution
time of a workflow. Our evaluation demonstrates how
Circulate scales in terms of data size and node size across
a range of common workflow topologies.
• Less-intrusive solution: In contrast with current service

choreography techniques, Circulate is a less-intrusive
solution. Our architecture is decoupled from the services
they interact with and can be deployed without disrupt-
ing existing infrastructure; this means that services do
not have to be altered before execution.

The remainder of this paper is structured as follows:
Section 2 introduces Circulate by discussing the archi-
tecture, a Web services implementation and providing a

concrete example. Section 3 extracts a set of recurring
workflow patterns which will be referred to throughout
the remainder of this paper. Section 4 discusses the
experimental set up used as the basis for the perfor-
mance analysis across Local Area Network (LAN) and
Internet-scale network configurations; a cross product of
workflow pattern, node size and network configuration.

Section 5 presents the results from our LAN configu-
ration, covering the remote LAN case, where all services
are deployed within a LAN but the workflow engine
is remote (common Cloud configuration) and the local
LAN case where both the services and engine are de-
ployed on the same LAN. Section 6 presents the results
from our Internet-scale configurations, executed over the
PlanetLab network, these experiments are broken down
into national (all nodes in the same country), continen-
tal (all nodes in the same continent) and world wide
configurations. In Section 7 the Circulate architecture is
applied to an end-to-end application, Montage [17], a
benchmark in the High Performance Computing com-
munity. Section 8 presents related work covering: decen-
tralised choreography languages, data flow optimisation
techniques and Grid frameworks which contain third-
party data transfers. Last, Section 9 presents conclusions
and future work.

2 THE CIRCULATE ARCHITECTURE

This Section describes the Circulate architecture’s hybrid
model, Web services implementation, API, a correspond-
ing example of use.

2.1 Circulate Actors

The Circulate architecture is a hybrid between orchestra-
tion and choreography techniques. In order to provide
Web services with the required functionality proxies are
introduced. A proxy is a lightweight middleware that
provides a gateway and standard API to Web service
invocation. Proxies are less-intrusive than existing chore-
ography techniques as individual services do not have
to be reconfigured in order to take part in a workflow.

P -> P

E -> P
E

E -> P

P -> S
P -> S

E -> S

Fig. 1. Actors and interactions of the Circulate archi-
tecture. Web services are represented by hollow circles,
proxies by solid circles, the workflow engine as a square,
dashed lines are WAN hops, solid lines LAN hops.
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Proxies are controlled through a centralised work-
flow engine, running an arbitrary workflow language;
allowing standards-based approaches and tooling to be
utilised. Proxies exchange references to data with the
workflow engine and pass actual data directly to where
they are required for the next service invocation. This
allows the workflow engine to monitor the progress and
make changes to the execution of a workflow.

To utilise a proxy, a Web service must first be reg-
istered. The Circulate actors and interactions are illus-
trated by Figure 1 and described below:
• Engine to proxy (E→P) interaction: In the standard

orchestration model, the workflow engine interacts di-
rectly with all Web services, which for the remainder
of the paper we will denote the engine to Web service
interaction (E→S). Using the Circulate architecture, the
workflow engine remains the centralised orchestrator for
the workflow, however the task of service invocation is
delegated to a proxy (E→P).
• Proxy-Web service (P→S) interaction: Proxies neither

create Web service requests, nor do they utilise their
responses. Proxies invoke services on behalf of a work-
flow engine, store the result (if required) and return a
reference to the workflow engine.
• Proxy to proxy (P→P) interaction: Proxies invoke Web

services on behalf of a workflow engine, instead of
sending the results of a service invocation back to the
workflow engine, they can be stored (if required) within
the proxy. In order for a workflow to progress, i.e., the
output of a service invocation is needed as input to
another service invocation, proxies pass data amongst
themselves, moving it closer to the source of the next
Web service invocation.

Proxies are ideally installed as “near” as possible to
enrolled Web services; by near we mean in terms of
network distance, so that the communication overhead
between a proxy and a Web service is minimised. De-
pending on the preference of an administrator, a proxy
can be responsible for one Web service, 1:1 or multiple
Web services, 1:N. Although it is ideal to place a proxy
as closely as possible to an enrolled service (e.g., within
the same network domain) it may not always be possible
due to the network policy of a particular organisation.
Performance benefit can still be accrued simply by har-
nessing the connectivity of proxies scattered across a
network; this is demonstrated throughout our perfor-
mance analysis across real networks, discussed further
in Section 5, 6 and 7.

2.2 Web Services Implementation

WS-Circulate is implemented using a combination of
Java and the Apache Axis Web services toolkit [2].
Proxies are simple to install and can be configured
remotely, no specialised programming needs to take
place in order to exploit their functionality. The only
changes required are to the workflow specification
itself which invokes methods on the proxy rather

than the services directly. WS-Circulate is multi-
threaded and allows several applications to invoke
methods concurrently. Results from Web service
invocations are stored at a proxy by tagging them
with a UUID (Universally Unique Identifier) and
writing them to disk. There is an assumption that
there is sufficient disk space and that storage is
temporary, which the proxy can clean up/delete
afterwards. Proxies are made available through a
standard WSDL interface. This interface contains the
following operations: invoke, stage, returnData,
flushTempData, addService, removeService,
listOps, listOpParams, listOpReturnType,
and listServices. Full details of the API and
implementation of the proxy can be found in a
complementary paper [4]. In order to simplify the
development and deployment, issues of security have
not been taken into account, this is left to future work.

2.3 Circulate Example

In order to demonstrate the Circulate architecture and
API, consider the following simple scenario (an example
of a fan-in pattern, discussed further in Section 3): three
sources are queried for data via Web service interfaces,
these data are combined and used as input to a final
sink service, which processes these data and returns a
results set. Using UML Sequence diagram notation, stan-
dard orchestration is illustrated by Figure 2 and Circulate
by Figure 3. Thicker arrows represent data movement,
data sizes are arbitrary and used for illustrative purposes
only.

Workflow
engine

source1 source2 source3

1: query()

2: query()

3:query()

4: reply(D1)

5: reply(D2)

6: reply(D3)

sink

7: compose(D1, D2, D3)

8: reply(AD)

100Mb

100Mb

100Mb

300Mb

100Mb

Fig. 2. UML Sequence diagram–orchestrated fan-in.

With reference to Figure 3, the first step in the work-
flow pattern involves making an invocation to the three
source Web services source1-source3. Instead of con-
tacting the service directly, a call is made to a proxy
(source-proxy) which has been installed on the same
server as the source1 Web service. The proxy invokes
the query operation on the source1 service, the output
is passed back to the proxy, tagged with a UUID (for
reference later, e.g., retrieval, deletion etc.) and stored.
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Workflow 
engine

source sinksource-
proxy

UUID

deliver(UUIDs, http://...)

get(UUIDs)

stage(UUIDs)

sink-
proxy

ack

store()

query()

data

invoke(source1,query)

store()

invoke(sink, compose, [UUIDs])]

get(UUIDs)

compose(UUIDs)

data

UUID

ack

300Mb

FOR EACH

 SOURCE:1, 2, 3
LAN: 
100MB

LAN: 
100MB

returnData(UUID) get(UUID)

data
100Mb

Fig. 3. UML Sequence diagram–Circulate fan-in.

The UUID (not actual data) is returned to the workflow
engine. This process is repeated (either serially or in
parallel) for source2 and source3 which could be
served through the same proxy or an independent proxy.

The output from the Web service invocations are
needed as input to the next service in the workflow, in
this case the sink Web service. The workflow engine
invokes the deliver operation on the source-proxy
passing in the three UUID references along with the
WSDL address of the sink-proxy. The source-proxy
retrieves the stored data and transfers it across the net-
work by invoking a stage operation on sink-proxy.
Data are then stored at sink-proxy, if successful an ac-
knowledgement message is sent back to source-proxy
which is returned to the workflow engine.

The final stage in the workflow pattern requires using
the output from the first three services as input to the
sink Web service. The workflow engine passes the name
of the service (sink) and operation (compose) to invoke
and the UUID references, which are required as input.
The proxy then moves the data across the local network
and invokes the compose operation on the sink service.
The output is again stored locally on the proxy and
a UUID reference generated and passed back to the
workflow engine. The workflow engine can then retrieve
actual data from the proxy when necessary using the
returnData operation.

3 WORKFLOW PATTERNS

As with software design patterns, workflow patterns
refer to recurrent problems and proven solutions in
the development of workflow applications. There is a
large body of workflow patterns research detailing a
comprehensive set of patterns from both a control flow
and data flow perspective, the most prevalent being the
work by van der Aalst and Hofstede et al. [1] and the
Service Interaction Patterns set by Barros et al. [6], a
collection of thirteen recurring patterns derived from
insights into business-to-business transaction processing.

Workflows in the scientific community are commonly
modelled as Directed Acyclic Graphs (DAGs), formed
from a collection of vertices (units of computation)
and directed edges. DAGs present a dataflow view, here
data are the primarily concern, workflows are con-
structed from data processing (vertices) and data trans-
port (edges). DAGs may be used to model processes
in which information flows in a consistent direction
through a network of processors. The Genome Analysis
and Database Update system (GADU) [26], the Southern
California Earthquake Centre (SCEC) [13] CyberShake
project, and the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [28] are all examples of High Perfor-
mance Computing applications composed using DAGs.

OMII-Taverna [25] is an example of a popular tool
used in the life sciences community in which workflows
are represented as DAGs and executed using the service-
oriented paradigm.

This paper focuses purely on optimising service-
oriented workflows, where services are relatively simple
and are not equipped to handle third-party transfers. For
the remainder of this paper we take inspiration (i.e., pat-
terns, input-output data relationships, scenarios) from
DAG-based workflows but stress that we are focused
purely on optimising service-oriented workflows.

3.1 Patterns

From a DAG one can extract a number of isolated work-
flow patterns (sequence, fan-in and fan-out) which will
be used as the basis for performance analysis throughout
the remainder of this paper. It is important to note
these patterns can be considered primitive or isolated
patterns, many isolated patterns can in combination,
form a macro-pattern, e.g., a fan-in followed by a fan-
out. This situation will be addressed when we discuss
the Montage application in Section 7.

DAG-based workflows are not the only possible rep-
resentation for workflows, however, they are used as the
basis for evaluation in this paper as they are commonly
used to represent scientific workflows.
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Fig. 4. Equations modelling the standard orchestration and Circulate case for sequence (1 and 2), fan-in (3 and 4)
and fan-out (5 and 6) patterns. Control flow is omitted.

Before we discuss each pattern we introduce the fol-
lowing mathematical notation which is used to provide
a concrete representation of each pattern:
• Pj : proxy.
• Si : service.
• P(Si) : proxy for service Si.

•

←→

C i,j : round-trip communication cost between enti-
ties i and j.
• ~Ci,j : one-way communication cost between entities

i and j.
• n represents the number of services. SFI is the fan-

in service, where all sources are sent, SFO is the fan-out
service, where source data are extracted.
• E : workflow engine.
• TCpat,nc‖circ : total communication cost of executing

a workflow pattern (seq, fo, fi - sequence, fan-out, or fan-
in, respectively) in Circulate (circ) or non-Circulate (nc),
i.e., standard orchestration architectures.

A mathematical representation of each pattern is pro-
vided in Figure 4 and illustrated further by Figure 5.
We have chosen this method in order to identify generic
trends of recurring patterns, which are both common-
place and reflect a realistic representation of how work-
flows are represented and executed. Complementing the
pattern-based evaluation we also execute an end-to-end
application, discussed in Section 7. With reference to
Figure 4 and Figure 5 each pattern will now be explained
in detail:
• Sequential pattern: This pattern involves the chaining

of services together, where the output of one service
invocation is used directly as input to another, i.e.,
serially. Data are sent from the workflow engine to the

E
E

E

EE

P2

E

!

2 6

S2

S
3

S4

S
1

S2

S
3

S4

S
1

P3

P4

P1

S1 S2 S3

SFI

5

S1 S2 S34

SFI

P1 P2 P3

PFI

SFO

S2 S3 S4

SFO

S2 S3 S4

PFO

P2 P3 P4

3

Fig. 5. Experiment setup used for the analytical model
and the pattern-based performance analysis. Data flow in
the sequential (first column), fan-in (second column) and
fan-out (third column) patterns for the centralised archi-
tecture using standard services (1,3,5) and the Circulate
architecture (2,4,6). Control flow messages are omitted.
This example shows 4 services, each proxy is deployed
on the same server as the service it is invoking.

first service in the chain and returned from the final
service in the chain to the workflow engine.

For the standard orchestration model (equation 1,
phase 1 of Figure 5) TCseq,nc involves round-trip com-

munications (
←→

C ) between services S1 . . . Sn. For the
Circulate architecture (equation 2, phase 2 of Figure 5)
TCseq,circ is calculated as follows: initial data are sent
one-way ( ~C) from the workflow engine E to the first

proxy P (S1), then round-trip (
←→

C ) between all proxies
and services P (S1), S1 . . .P (Sn), Sn, one-way ( ~C) be-
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tween n − 1 proxies, and finally one-way ( ~C) between
the final proxy P (Sn) and the workflow engine E.
• Fan-in pattern: The fan-in pattern explores what hap-

pens when data are gathered from multiple distributed
sources, concatenated and sent to a service acting as a
sink. Multiple services are invoked with a control flow
(no data are sent) message asynchronously, in parallel,
data are returned from each service. Once data has been
received from all source services it is concatenated and
sent to the sink service as input, which in turn returns
final output data to the workflow engine.

For the standard orchestration model (equation 3,
phase 3 of Figure 5) TCfi,nc involves one-way ( ~C) com-
munications between all sources of data S1 . . . Sn and the
workflow engine E, all source data are then sent round-

trip (
←→

C ) between the workflow engine and the final sink
service SFI .

For the circulate architecture (equation 4, phase 4 of

Figure 5) TCfi,circ involves round trip (
←→

C ) communica-
tions between all source proxies and all source services
P (S1) . . . P (Sn), one-way communication ( ~C) between
all source proxies P (S1) . . . P (Sn) and the sink proxy
P (SFI), once received by the sink proxy round-trip

communication (
←→

C ) takes place between the sink proxy
P (SFI) and the sink service SFI , finally data are sent
one-way ( ~C) back to the workflow engine E.
• Fan-out pattern: This pattern is the reverse of the fan-

in pattern, here the output from a single source is sent to
multiple sinks. An initial source service is invoked with
a control flow message (again no actual data are sent),
the service returns data as output. These data are sent,
asynchronously in parallel to multiple services as input,
each service returns final data to the workflow engine.

For the standard orchestration model (equation 5,
phase 5 of Figure 5) TCfo,nc involves one-way commu-
nication ( ~C) between the source service SFO and the
workflow engine E, followed by round-trip communi-

cation (
←→

C ) between the workflow engine E and all sink
services S1 . . . Sn.

For the Circulate architecture (equation 6, phase 6
of Figure 5) TCfo,circ involves round-trip communica-

tion (
←→

C ) between the source proxy P (SFO) and the
source service SFO, one-way communication ( ~C) be-
tween the source proxy P (SFO) and all sink prox-

ies P (S1) . . . P (Sn), round-trip communication (
←→

C ) be-
tween all sink proxies P (S1) . . . P (Sn) and all sink ser-
vices S1 . . . Sn, finally one-way communication ( ~C) be-
tween all sink proxies P (S1) . . . P (Sn) and the workflow
engine E.

4 EXPERIMENTAL SETUP

A number of performance analysis experiments have
been devised in order to observe and analyse the be-
haviour of various workflow patterns and variables to
compare the Circulate architecture with that of a stan-
dard centralised orchestration model. The following sec-
tions describe the structure of the resulting performance

analysis experiments which are based the workflow
patterns described in Section 3.

4.1 Node Size and Network Configurations

In our experimental set up, data flows with no data
transformations (i.e., the output of one method invo-
cation is the input to another). We use non-blocking
asynchronous communication between the Web services,
although data forwarding between proxies occurs after
all Web services have finished execution.

For each of the 3 workflow patterns: sequence, fan-in
and fan-out, the time taken for the pattern to complete
using centralised orchestration and using the Circulate
architecture is recorded (in milliseconds) as the size of
the input data (in Megabytes) is increased. This basic set
up is then run incrementally over a number of workflow
node sizes: 4, 8 and 16 nodes in order to explore the
affects of scalability. Each node size (i.e., 4, 8 or 16) is then
run over different network configurations to explore
how network configuration affects the performance of
a workflow.

E

E

E

Fig. 6. Configurations from left to right: local LAN, remote
LAN, Internet-scale. Services, proxies and the workflow
engine are always deployed on separate machines.

We have selected the following network configura-
tions (illustrated by Figure 6) which mimic common
scenarios when composing sets of geographically dis-
tributed services:
• LAN experiments: Moving the Web services to a

relatively uniform network topology in terms of speed,
e.g., a LAN, allows for a simplified analysis of the two
models. In a LAN, it is expected that the cost of the
communication links E→S, E→P, P→S and P→P have
little variance in terms of bandwidth. In this case the
performance benefit with respect to the different work-
flow patterns may be exposed more readily. We explore
this with a LAN configuration with a local workflow
engine (same LAN) and a LAN configuration with a
remote workflow engine (connected through a WAN).
• Internet-scale experiments: PlanetLab [9] is a global

research network of distributed servers that supports the
development of new network services. We have heavily
utilised this framework in order to evaluate the perfor-
mance of the Circulate architecture across Internet-scale
networks. We have subdivided the pattern-based Plan-
etLab experiments into 3 configurations which mimic
the typical geographical distribution patterns found in
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workflow applications: ‘National’ (all nodes in the same
country), ‘Continental’ (nodes in different countries on
the same continent), and ‘World-wide’ (nodes spread
throughout the globe). Finally, to demonstrate end-to-
end performance, an end-to-end application is executed
across the PlanetLab framework.

4.2 Experiment Cross Product

The configuration of our experiments mirror that of a
typical workflow scenario, where collections of physi-
cally distributed services need to be composed into a
higher level application, scaling from LAN to Internet-
scale network configurations. In order to create a uni-
form test environment, proxies invoke Web services with
one operation which inputs and outputs Java byte arrays
transferred using SOAP. The cross product of each work-
flow pattern, node size and network configuration has
been executed 100 times (combined standard deviation
can be seen on graphs where a mean performance benefit
is reported) over a set of distributed Linux machines
running the WS-Circulate architecture discussed in Sec-
tion 2.2. The experiments and graphs (throughout this
paper) can be summarised as follows:

1) x-axis displays the size of the initial input file in
Megabytes: for the sequence pattern this displays
the size of data sent to the first service in the
workflow, for fan-in and fan-out this represents the
size of data returned by the first service.

2) For the LAN experiments the size of the initial
input file ranges from 2MB to 96MB with a total
of 12 data points collected. For the Internet-scale
experiments the size of the initial input file ranges
from 2MB to 64MB with a total of 10 data points
collected. Each experiment is executed 100 times.

3) The y-axis displays the mean performance benefit.
The mean performance benefit is calculated by
dividing the mean time taken to execute the work-
flow using standard orchestration (i.e., non-proxy,
fully centralised) and dividing it by the mean time
taken to execute the workflow using the Circulate
architecture. For example, a result of 2.0 means
that the Circulate architecture executes a workflow
twice as fast as standard orchestration.

4) Graphs that represent a performance benefit are
shown together with a combined standard devi-
ation of the two populations: orchestration and
Circulate, represented by equation 7.

√

(

stdev-non-circ

mean-non-circ

)2

+

(

stdev-circ

mean-circ

)2

(7)

5 LAN C ONFIGURATION

A pool of computers from the University of Edin-
burgh Distributed Informatics Computing Environment
(DICE)1 LAN were selected as workflow nodes for these
configurations. These machines are all located in the
same building and are connected to the network via a
100 Mbit network connection. All these machines share
the same hardware/operating environment: Intel Core
2 Duo with 2GB RAM running Ubuntu version 7.04.
In addition to these matched machines, similar servers
(separate machines) were chosen to act as the workflow
engine, allowing us to explore the remote orchestration
case and the local orchestration case.

5.1 LAN - Remote Orchestration

By moving the workflow engine outside of the LAN
configuration, we can explore workflow engine to Web
service (E→S) communication. This reflects a very com-
mon real world scenario where a particular organisa-
tion provides all of the Web services used to compose
a workflow, but these services are being orchestrated
remotely. In particular this is applicable to Cloud Com-
puting scenarios (for example Amazon Elastic Compute
Clouds2) where services are typically hosted on groups
of co-located machines and where the end user requiring
these services is remote.

Figure 7(a) displays the mean performance benefit
across each of the workflow patterns, on a LAN with 4
nodes, where all Web services are mapped to a single
proxy and the workflow engine is remote from both
proxies and services.

As one can observe from Figure 7(a), for all patterns
the Circulate architecture outperforms the standard or-
chestration model, i.e., the mean performance benefit is
larger than 1 even at low data sizes. The fan-in pattern
shows the greatest benefit.

To justify, as the workflow engine lies outside the
LAN where the Web services and proxies are deployed,
the E→S and E→P links can be considered “expensive”
WAN hops. As the proxy is deployed on the same LAN
as the Web services it is invoking the P→S link is a
less expensive LAN hop. Within a standard orchestration
model, all data pass through a centralised workflow
engine, hence all data are transferred over the expensive
E→S link. Using the Circulate architecture, most of the
processing for each of the patterns takes place over the
less expensive P→S link; intermediate data are housed
within the proxy. Data are only sent over the expensive
E→P link at the start of the sequence pattern and the
end of all patterns.

One can make the following observations from the
LAN-scale experiments:
• Patterns: With reference to Figure 7(a), the worst

performing pattern in this scenario was the sequence

1. http://www.dice.inf.ed.ac.uk [24/02/11]
2. http://aws.amazon.com/ec2 [24/02/11]
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(c) 4-node LOCAL LAN

Fig. 7. Remote LAN configurations

pattern, however even this pattern demonstrates the
significant advantage of using the Circulate architecture.
At 2MB, the mean performance benefit is just 1.03, at
96MB this benefit increases to 2.0. Looking at the best
performing pattern, fan-in, at 2MB the mean perfor-
mance benefit is 2.0, at 96MB the mean performance
benefit has risen to 16.8.

• Node size: In order to explore scalability, the same
experiment was run over 8-node and 16-node configu-
rations. One proxy is assigned to each group of four Web
services, resulting in 2 proxies for the 8-node experiment
and 4 proxies for the 16-node experiment. As per the
previous setup, the workflow engine is remote from all
services and proxies. Figure 7(b) illustrates the mean
performance benefit of each of the node configurations
when compared to the centralised orchestration model
for the fan-in pattern. We have selected the fan-in pattern
as it demonstrates the most consistent improvement in
performance.

The Circulate architecture always outperforms the
centralised orchestration model for each of the node
configurations. To justify, as the number of proxies in-
creases, so does the P→P communication, which adds a
minimal additional cost to the execution of a workflow.
However, this minimal overhead only adds an additional
cost in comparison with using a configuration where all
services share the same proxy. Our scaling experiment
demonstrates that Circulate outperforms traditional or-
chestration for all node sizes in the remote LAN case.

• Data size: As the size of data involved in each of the
patterns increases, the cost of processing the expensive
WAN hops also increases. As the Circulate architecture
reduces these more expensive WAN hops, the benefit
of utilising the architecture increases in proportion to
the size of data involved in a workflow. To quantify
(with reference to Figure 7(b)), at 16MB the 8-node
fan-in pattern’s mean performance benefit was 1.9, at
96MB this increased to 6.4. At 16MB the 16-node fan-
in pattern’s mean performance benefit was 2.2, at 96MB
this increased to 4.4.

5.2 LAN - Local Orchestration

In order to explore the limits of our approach, the
workflow engine is deployed on a computer that is also
connected to the proxies and Web services via a network
switch. This is a suitable experimental setup to test the
assumption of communication link equality but does not
necessarily reflect common deployed patterns of Web
services, normally the workflow engine is remote.

Figure 7(c) displays the mean performance benefit as
the data size increases across each of the 3 workflow
patterns on a LAN running a local workflow engine,
with 4-nodes, where 4 Web services each share a proxy.

In a LAN environment we make the assumption
that the cost of communication is relatively uniform,
therefore the cost of E→S, E→P, P→S and P→P can
be considered approximately equal. The Circulate archi-
tecture introduces extra communication links (between
P→S) across this uniform network topology, which in
turn degrades the execution time of a workflow when
compared to standard orchestration. With reference to
Figure 7(c) the fan-in pattern demonstrates similar per-
formance to the standard orchestration model, while the
standard orchestration model outperforms the fan-out
and sequence patterns.

6 INTERNET-SCALE CONFIGURATIONS

Moving the experiments to the PlanetLab configura-
tions allows the Circulate architecture to be evaluated
over Internet-scale networks. The PlanetLab environ-
ment configurations are based on the geographical lo-
cation of the nodes, which in turn are used as an
indicator of communication link cost. By grouping the
nodes, certain realistic scenarios can be constructed for
the experiments. For example, by using a group of
nodes all located in France, one can execute a workflow
simulating the interactions between collaborating French
universities; such scenarios are common place in large-
scale workflows. The PlanetLab configurations all use a
remote workflow engine, this is a common feature of
scientific workflows, as one can imagine a scientist in a
remote location orchestrating resources from a number
of collaborating institutions.
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(a) France 4-node PlanetLab
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(b) Germany 4-node PlanetLab
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(c) USA 4-node PlanetLab
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(d) Europe 8-node PlanetLab
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(e) USA-wide 8-node PlanetLab
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(f) World wide 16-node PlanetLab

Fig. 8. National (4-node), continental (8-node) and global (16-node) PlanetLab configurations

Due to the variable nature of PlanetLab, node selec-
tion was a complex matter. We ran extensive tests to
locate groups of nodes that we could reliably access
throughout the duration of our experiments. After these
preliminary tests nodes from France, Germany and the
USA were selected, each nodes are shown in Table 1.
Each workflow pattern was then executed over nodes
from Table 1, mashed up using different geographical
network configurations. The breakdown of each pattern,
network configuration and mean performance benefit is
displayed in Table 2.

TABLE 1
PlanetLab node selection.

France Germany USA
inisa.fr uni-konstanz.de brown.edu
inria.fr uni-goettingen.de mit.edu
utt.fr uni-paderborn.de poly.edu

fraunhofer.de umd.edu
tu-darmstadt.de byu.edu

postel.org
iit-tech.net

• National–4-node: Within the national configuration, 4
nodes were selected to deploy the Web services, a further
node acted as a shared proxy and the workflow engine
was deployed on a final node that is a separate node
from the proxy and services. The mean performance
benefit for the France configuration is displayed in Fig-

TABLE 2
National (4-node), continental (8-node) and world wide

(16-node) PlanetLab mean performance benefits.

Configuration Best Worst Mean
4-node – France

Seq 1.49 1.27 1.39
Fan-in 1.30 1.08 1.27

Fan-out 1.61 1.4 1.43
Overall 1.36

4-node – Germany
Seq 1.72 1.50 1.58

Fan-in 3.13 2.72 2.94
Fan-out 1.82 1.64 1.69
Overall 2.07

4-node – USA
Seq 1.76 1.50 1.61

Fan-in 1.95 1.69 1.85
Fan-out 1.85 1.30 1.61
Overall 1.69

8-node – Europe
Seq 2.42 2.18 2.27

Fan-in 1.69 1.56 1.61
Fan-out 1.87 1.67 1.72
Overall 1.87

8-node – USA
Seq 2.04 1.64 1.75

Fan-in 2.22 1.79 2.04
Fan-out 1.27 1.11 1.18
Overall 1.66

16-node – World wide
Seq 1.44 1.12 1.29

Fan-in 2.63 1.92 2.32
Fan-out 1.89 1.04 1.22
Overall 1.61
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ure 8(a), the Germany configuration in Figure 8(b) and
the USA configuration in Figure 8(c).
• Continental–8-node: In order to separate the nodes

further, each workflow pattern was executed across 2
continental configurations. The first was a European set,
which contained nodes from both France and Germany.
The second utilised nodes across the USA. 8 Web services
were deployed across 8 nodes, a further 2 nodes acted
as proxies for groups of 4 Web services, a final node
acted as a workflow engine that is a separate node from
any of the proxies and services. The mean performance
benefit for the European configuration is displayed in
Figure 8(d) and USA-wide configuration in Figure 8(e).
• World wide–16-node: The final PlanetLab experiment

executed each pattern across all available nodes in the
previous configurations. 16 Web services were deployed
across 16 nodes, 4 proxies were deployed across sepa-
rate nodes, which manage 4 Web services each, a final
node acted as the workflow engine that is a separate
node from any of the proxies and services. The mean
performance benefit for the world wide configuration is
displayed in Figure 8(f).

One can make the following observations from the
Internet-scale experiments:

The Circulate architecture always outperformed the
centralised orchestration model. The greatest overall im-
provements in performance were seen on the 4-node
Germany configuration (2.07 overall mean performance
benefit), 8-node Europe configuration (1.87 overall mean
performance benefit), and 4-node USA configuration
(1.69 overall mean performance benefit).
• Patterns: If we calculate the mean across all Internet-

scale network configurations (i.e., the 4, 8 and 16-node)
from Table 2 the following trends can be observed: the
sequence pattern demonstrated a performance benefit of
1.65, fan-in a performance benefit of 2.01 and fan-out a
performance benefit of 1.48.
• Data size: As one can observe from Figures 8(a) to

8(f), the Internet-scale configurations were more variable
than the LAN experiments. However the general trend
was that as the data size increased the benefit either
improved or remained relatively constant.
• Node size: Obtaining general trends on the PlanetLab

results was not as straight forward as the LAN configu-
rations. Unlike the relatively uniform LAN environment,
the performance across PlanetLab is heavily dependent
on the quality of links utilised and current load of the
network (observed by the error bars in Figure 8). As we
have discovered PlanetLab links vary radically in quality.
For example, the overall improvement in the 4-node
German configuration (2.07 mean performance benefit)
is higher than in the 4-node France configuration (1.36
mean performance benefit). Analysing individual runs
it was found that the E→S and E→P communication
cost was higher in the German nodes. As the Circulate
architecture reduces these expensive links, the mean
performance benefit across pattern was lower.

For standard orchestration the quality of the E→S links

is the overall factor affecting performance, for Circulate
it is the quality of the E→P and P→P links. Therefore
one has to place proxies carefully in order to ensure
that the P→P links are faster than the E→S links, these
optimisation and proxy placement strategies are left to
future work.

Most promising however was that in all cases, when
all workflow patterns were taken into account, the Cir-
culate architecture always speedup the execution time
of a workflow. This is important as it demonstrates that
even if one pattern is misbehaving, a workflow, which
will be composed of an arbitrary number of patterns will
still experience performance improvements.

7 END-TO-END APPLICATION : MONTAGE

Although the focus of our paper has primarily been
on pattern-based performance analysis, it is important
to demonstrate the Circulate architecture on an end-to-
end application. Figure 9 illustrates the Montage work-
flow, a benchmark in the High Performance Computing
community and representative of a class of large-scale,
data-intensive workflows. Montage constructs custom
“science-grade” astronomical image mosaics from a set
of input image samples. It illustrates several features of
data-intensive scientific workflows and it can result in
large data flow requirements, intermediate data can be
3 times the size of input data.

Fig. 9. Montage use-case scenario.

The Montage workflow is represented as a DAG, each
component of the DAG (along with corresponding input-
output data ratios) is explained as follows:

1) mProject: re-projects an image to the coordinate
system defined in a header file. (output = input)

2) mDiff/mFitPlane: 3 inputs (1 header and 2 images)
fan-in to the mDiff function, which finds the differ-
ence between the two images, the output is then
passed through the mFitPlane function (usually
executed on the same machine), which fits a plane
to the difference image. Output = 15–20% of a
typical image for each image triplet.
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(a) Montage end-to-end performance

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1  2  3  4  5

M
e
a
n
 p
e
rf
o
rm
a
n
c
e
 b
e
n
e
fi
t

DAG phase

Single proxy
Shared proxy

(b) Montage DAG phase performance

 0

 1

 2

 3

 4

 5

 6

 7

 50  100  150  200  250

R
a
ti
o
 o
f 
ti
m
e
 e
la
p
s
e
d

Data size (Kb)

(c) The overhead of invoking a proxy

Fig. 10. Montage end-to-end performance (a), Montage individual phases performance (b) and proxy overhead (c).

3) mConcatFit: a simple concatenation of the plane
fit parameters from multiple mDiff/mFitPlane jobs
into a single file. fan-in pattern with 18 inputs (from
different resources), which are passed through the
mConcatFit function.

4) mBgModel: models the sky background using the
plane fit parameters from mDiff/mFitPlane and
computes planar corrections for the input images
that will rectify the background across the entire
mosaic. mBgModel is a fan-out pattern, where the
output is distributed to 10 sinks.

5) mBackground/mAdd: the mBackground function
rectifies the background in a single image, output =
input. Data from each mBackground computation
are sent to the mAdd function, which co-adds a
set of reprojected images to produce a mosaic as
specified in a template header file. This forms a
fan-in pattern with 10 inputs to the mAdd function
(output = 70–90% the size of inputs put together).

The Montage application (Web services and data)
along with a set of proxies were deployed on PlanetLab
nodes spanning the USA. Our deployment maintains
the number of services (i.e., fan-ins and fan-outs), data
sizes and importantly the input-output relationships of
Montage.

Two experiments were performed: first, “single proxy”
where each Web service is maintained by its own proxy,
and “shared proxy” where groups of 4 Web services were
maintained by a single proxy. Proxies and services were
scattered across PlanetLab nodes spanning the USA,
proxies were always deployed on a separate machine
within the same domain as the Web service it is invoking
and the workflow engine was always remote from both
proxy and Web service. This deployment was executed
50 times across the PlanetLab framework. As with pre-
vious experiments the x-axis represents the size of the
input file and 95% confidence intervals are provided
for every mean performance benefit. A total of 13 data
points were collected from 10MB to 240MB. As we are
focusing purely on optimising data transfer, processing
times in both models have not been taken into account
as these remain the same regardless of the number of

services served per proxy.
Figure 10(a) illustrates the end-to-end mean perfor-

mance benefit of the Montage application using Circu-
late and standard centralised orchestration. Figure 10(b)
illustrates the mean performance benefit (average across
13 data points and 50 runs) per phase of the Montage
application and demonstrates how each phase collec-
tively provides an end-to-end benefit. Phase 1 represents
mProject to mFitPlane, phase 2 mConcatFit, phase 3
mBgModel, and phase 4 mBackground to mAdd.

The end-to-end Montage application resulted in a
mean performance benefit of 6.95 for the single proxy
configuration over all 13 data volumes tested.

This benefit increases slightly as the input data size
increased: from an average of 6.4 (30 seconds for or-
chestration, 192 seconds for Circulate) at 10MB to an
average of 7.6 (246 seconds for orchestration, 1869.6 for
Circulate) at 240MB. The shared proxy configuration
resulted in a mean performance benefit of 7.12, again
the benefit increased slightly as the data size increased:
from 6.5 (24 seconds for orchestration, 156 seconds for
Circulate) at 10MB to 7.75 (216 seconds for orchestration,
1674 seconds for Circulate) at 240MB. The shared proxy
resulted in a marginal benefit over the single proxy
configuration due to reduced data transfer to and from
proxies. With reference to the pattern-based performance
analysis, we confirm that the benefit of using the Cir-
culate architecture increases when isolated patterns are
placed together to form a larger application.

7.1 Proxy Overhead

Figure 10(c) displays the average time (as a ratio: non-
proxy centralised time divided by Circulate elapsed
time) it takes to make a single invocation to a vanilla
Web service and obtain the result vs. an invocation to
a proxy that invokes the service on the orchestration
engines behalf and returns a reference to its data. The
workflow engine is remote to both proxy and service.
Results under the horizontal line indicate the vanilla
approach is optimal, results over the line show a benefit
of using the Circulate architecture.

Circulate effectively separates out the control flow
and data flow messages from one another; the work-
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flow engine invokes proxies with smaller control flow
messages and proxies pass larger data flow messages
directly to one another. Although workflow languages
such as BPEL do not explicitly separate out these two
types of messages it is useful to think of data transfer in
this way. The proxy overhead experiment demonstrates
that Circulate is only suited to workflows where large
quantities of intermediate data flow between services in
a workflow. From the results we conclude that due to
the overhead of the proxy, when dealing with input data
sizes of less than ∼100K of data the Circulate architecture
offers no performance benefit to Web services. Anything
over ∼100K of data the proxy begins to speedup the
execution time of the invocation due to the storage of
the results within the proxy.

8 RELATED WORK

This Section discusses all related work from the litera-
ture, spanning pure choreography languages, enhance-
ments to widely used modelling techniques, i.e., BPMN,
decentralised orchestration, data flow optimisation ar-
chitectures and Grid toolkits.

8.1 Choreography Languages

For completeness it is important to discuss the current
state-of-the-art in choreography techniques. There are an
overwhelming number of pure orchestration languages.
However, relatively few targeted specifically at choreog-
raphy, the most prevalent being WS-CDL [5], BPEL4Chor
[12] and Let’s Dance [30].

There are even fewer complete implementations of
choreography languages, this means that choreography
techniques are rarely deployed in practice. For exam-
ple, there are only two documented prototype imple-
mentations of the WS-CDL specification. WS-CDL+, an
extended specification [18] has been implemented in
prototype form, although only one version, version 0.1
has been released. A further partial implementation [14]
of the WS-CDL specification is currently in the proto-
type phase. The other widely known implementation
is pi4soa3, an Eclipse plugin that provides a graphical
editor to compose WS-CDL choreographies and generate
from them compliant BPEL. Maestro [11] is an imple-
mentation of the Let’s Dance language and supports the
static analysis of global models, the generation of local
models from global ones, and the interactive simulation
(not enactment) of both local and global modes. In the
BPEL4Chor space, a Web-based editor4 allows engineers
to graphically build choreography models.

8.2 Techniques in Data Transfer Optimisation

There are a limited number of research papers that
have identified the problem of a centralised approach
to service orchestration.

3. http://sourceforge.net/projects/pi4soa [24/02/11]
4. http://www.bpel4chor.org/editor [24/02/11]

The Flow-based Infrastructure for Composing Autonomous
Services or FICAS [23] is a distributed data-flow archi-
tecture for composing software services. Composition of
the services in the FICAS architecture is specified using
the Compositional Language for Autonomous Services
(CLAS), which is essentially a sequential specification
of the relationships among collaborating services. This
CLAS program is then translated by the build-time
environment into a control sequence that can be executed
by the FICAS runtime environment.

FICAS is intrusive to the application code as each
application that is to be deployed needs to be wrapped
with a FICAS interface. In contrast, our proxy approach
is more flexible as the services themselves require no
alteration and do not even need to know that they are in-
teracting with a proxy. Furthermore our proxy approach
introduces the concept of passing references to data
around and deals with modern workflow standards.

Service Invocation Triggers [7], or simply Triggers are
also a response to the bottleneck problem caused by cen-
tralised workflow engines. Triggers collect the required
input data before they invoke a service, forwarding the
results directly to where these data are required. For this
decentralised execution to take place, a workflow must
be deconstructed into sequential fragments that contain
neither loops nor conditionals and the data dependencies
must be encoded within the triggers themselves. This is
a rigid and limiting solution and is a barrier to entry for
the use of proxy technology. In contrast with our proxy
approach, because data references are passed around,
nothing in the workflow has to be deconstructed or
altered, which means standard orchestration languages
such as BPEL can be used to co-ordinate the proxies.

In [24] a similar (pure choreography) approach is
also proposed. Authors introduce a methodology for
transforming the orchestration logic in BPEL into a set
of individual activities that co-ordinate themselves by
passing tokens over shared, distributed tuple spaces.
The model suitable for execution is called Executable
Workow Networks (EWFN), a Petri nets dialect. This
approach utilises a pure choreography model which
has many additional modelling and enactment problems
associated with it, due primarily to the complexity of
message passing between distributed, concurrent pro-
cesses.

Data caching techniques in Grid workflows are proposed
in [8]. This architecture caches “virtual data” of previous
queries, so any overlapping queries and processing do
not have to be repeated. The Circulate architecture stores
data at a proxy so that it can be transferred directly to the
next stage of the workflow, avoiding costly network hops
back to the workflow engine. It is then up to the user to
clean up stored data afterwards, by using the methods
discussed in Section 2.2. The automated data caching
techniques proposed could be applied to the Circulate
proxies to further enhance performance.



13

8.3 Third-party Data Transfers

This paper focuses primarily on optimising service-
oriented workflows, where services are: not equipped to
handle third-party transfers, owned and maintained by
different organisations, and cannot be altered in anyway
prior to enactment. For completeness it is important
to discuss engines that support third-party transfers
between nodes in task-based workflows.

Directed Acyclic Graph Manager (DAGMan) [10] submits
jobs represented as a DAG to a Condor pool of resources.
DAGMan removes the workflow bottleneck as data are
transferred directly between vertices in a DAG however
focuses purely on Condor bases Grid jobs and does
not address the bottleneck problems associated with
orchestrating service-oriented workflows.

Triana [27] is an open-source problem solving environ-
ment. It is designed to define, process, analyse, manage,
execute and monitor workflows. Triana can distribute
sections of a workflow to remote machines through a
connected peer-to-peer network.

OGSA-DAI [19] is a middleware product that supports
the exposure of data resources on to Grids. This middle-
ware facilitates data streaming between local OGSA-DAI
instances. Our architecture could be implemented on this
platform to take advantages of its streaming model.

Grid Services Flow Language (GSFL) [21] addresses some
of the issues discussed in this paper in the context of
Grid services, in particular services adopt a peer-to-
peer data flow model. However, individual services have
to be altered prior to enactment, which is an invasive
and custom solution, something that is avoided in the
Circulate architecture.

9 CONCLUSIONS

As the number of services and the size of data involved
in workflows increases, centralised orchestration tech-
niques are reaching the limits of scalability, in stan-
dard orchestration: all data passes through a centralised
engine resulting in unnecessary data transfer, wasted
bandwidth and the engine to become a bottleneck to
the execution of a workflow. Decentralised choreography
techniques, although optimal in terms of data transfer
are far more complex to build due to message passing
between distributed, concurrent process and in practice
and rarely deployed.

This paper has presented the Circulate architecture; a
centralised orchestration model of control with a peer-
to-peer choreography model of data transfer. This extra
functionality is achieved through the deployment of a
lightweight proxy that provides a gateway and standard
API to Web service invocation. Importantly, proxies can
be deployed without disrupting current services and
with minimal changes in the workflows that make use
of them. This flexibility allows a gradual change of
infrastructures, where one could concentrate first on
improving data transfers between services that handle
large amounts data.

An open-source Web services implementation, WS-
Circulate, served as the platform for our evaluation
across LAN and Internet-scale configurations through
the PlanetLab network. Through our experimentation
we have demonstrated that by reducing data transfer,
the Circulate architecture significantly speeds up the
execution time of workflows across common workflow
patterns and network topologies. Moreover, it scales
with data size and common workflow topologies, and
consistently outperforms centralised orchestration tech-
niques. The Montage DAG demonstrated that the ben-
efit of using the Circulate architecture increases when
isolated patterns are placed together to form a larger
application.

Future work includes the following challenges:
• Architecture evolution: Although this paper has dis-

cussed a Web services-based implementation, Circulate
is a general architecture and mappings could be provide
to multiple back end technologies, e.g., Condor [22]. This
would allow multiple technology sets to be optimised
and orchestrated via a standard workow language and
workflow engine.
• Compressing Web service content: Techniques e.g.,

gzipped SOAP5 have been proposed to reduce the quan-
tity of data transferred between Web services. We plan to
integrate such techniques into the Circulate architecture.
• Proxy placement: This architecture also opens up a

rich set of additional optimisations with respect to dy-
namic proxy deployment i.e., load balancing depending
on network traffic.
• Data transformation: A common workow task is to

change the output data from one service into a slightly
different format to use as input into another service,
this process is known as Shimming. This will affect
the performance of a workow further as it introduces
an extra service into the workow chain. If a shim is
implemented as a custom transformation Web service
this step will simply be included in the workflow spec-
ification. Future work includes implementing a shim
loader component, where custom shims can be uploaded
to the proxy, allowing shims to be performed locally at
a proxy, avoiding the introduction of further network
hops.
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