
Linking Data, Services and Human Know-How

Paolo Pareti1, Ewan Klein1, and Adam Barker2

1 University of Edinburgh, Edinburgh, United Kingdom
p.pareti@sms.ed.ac.uk, ewan@inf.ed.ac.uk

2 University of St Andrews, St Andrews, United Kingdom
adam.barker@st-andrews.ac.uk

Abstract. An increasing number of everyday tasks involve a mixture of
human actions and machine computation. This paper presents the first
framework that allows non-programmer users to create and execute work-
flows where each task can be completed by a human or a machine. In this
framework, humans and machines interact through a shared knowledge
base which is both human and machine understandable. This knowledge
base is based on the prohow Linked Data vocabulary that can repre-
sent human instructions and link them to machine functionalities. Our
hypothesis is that non-programmer users can describe how to achieve
certain tasks at a level of abstraction which is both human and machine
understandable. This paper presents the prohow vocabulary and de-
scribes its usage within the proposed framework. We substantiate our
claim with a concrete implementation of our framework and by experi-
mental evidence.

1 Introduction

This paper addresses the largely unexplored problem of enabling non program-
mers to specify the type of behaviour they require from machines, as opposed
to being constrained by their pre-defined functionalities. Applications such as
ifttt3 (If-This-Than-That) have demonstrated that, given the right tools, users
are capable of composing di↵erent components, such as triggers and actions, to
program certain desired behaviours on a system. ifttt for example, allows users
to define conditions, such as “if there is a chance of rain tomorrow”, in order to
automatically trigger actions, such as “notify me”.

At the opposite end of the spectrum from computer programs, human instruc-
tions can be seen as ways to “program” human behaviours. Humans are capable
of specifying complex workflows based on human actions. Online instructions,
such as those available on the wikiHow4 website, often include di↵erent meth-
ods, steps, loops, and conditions. The main disadvantage of human instructions
is that they are not machine understandable. Consequently, any useful function-
ality that a human could benefit from while following a set of instructions has
to be manually accessed and triggered by the user.

3 http://ifttt.com/
4 http://www.wikihow.com/

The main contributions of this paper are two. The first is a framework that
allows non-programmers to define and execute human-machine workflows. Our
approach overcomes the limitations of traditional human instructions by allow-
ing machines to automatically detect when certain actions are needed, and con-
sequently to actively execute them. Section 4 presents the components of our
framework and describes how they achieve its objective. An implementation of
this framework is described in Section 6 and its usability by non-programmer
users is evaluated in Section 7.

The second contribution is the prohow Linked Data vocabulary that we use
to represent this knowledge base. This vocabulary not only describes human-
machine workflows but can also trigger and describe their execution. Thus Linked
Data, in our framework, acts both as a data representation and as a program-
ming language. The details of this vocabulary, along with its intended logical
interpretation, are given in Section 5.

2 Motivating Example

As a running example, we consider a scenario where a non-programmer human
is writing instructions that include some automatable steps. In this scenario,
Jane is an employee of a company who is in charge of curating content on the
company website. Today Jane has gained access to a text file containing a long
list of cities that the company has worked with. Each line of the file contains the
name and Wikipedia page of the city in the following format:
<London: https://en.wikipedia.org/wiki/London>
Jane’s job is to display the name and o�cial website of each city as a list on the
company’s website. To achieve this, she wants to transform every entry in the
dataset into an html list element in this format:
London: https://london.gov.uk/
Jane decides to delegate this task (that we will denote t) to John, one of her
collaborators, and she gives him these instructions:

Step 1: Remove < and > from the string of text.
Step 2: Substitute the wikipedia URL with the o�cial website of the city.
Step 3: Enclose the string of text with .

Jane notices that some steps in her instructions could be easily automated by
a machine. However, Jane’s problem is that nobody in her company is a program-
mer. Consequently, although some of the required functionalities are available
in their computers, the whole task might have to be completed manually.

Our proposed solution for Jane’s problem is to let her use a system that
automatically translates her natural language instructions into machine under-
standable data and that semi-automatically links them to machine functionali-
ties. This system might analyse the natural language description of steps 1 and
3 and detect that they fall within its capabilities. Given this configuration, when
task t is started with a new string of text as input, the system could immedi-
ately execute the first step of the instructions. Then, as soon as the second step
is complete, the third step will also be automatically executed.

The system will store all the information about Jane’s task as Linked Data.
This will allow the system to publish this information to other systems, and
maybe discover that there is an external service that can also automate the
second step of Jane’s instructions. For example, an external service might be
able to automate Jane’s second step by querying the DBpedia5 dataset, which
contains information about the o�cial websites of a large number of cities.

An important observation that can be derived from this example is that it
is ine�cient to create ad hoc systems to achieve these types of tasks, especially
when they are small in scale, and when they can occur frequently but with
variations. For example, other problems might require the same functionalities
required by t, but combined together into a di↵erent workflow. Instead of cre-
ating rigid ad hoc solutions for human-machine collaboration, our approach to
automation makes use of simple and generic machine capabilities that can be
integrated with several di↵erent human-made instructions.

Many such capabilities can be imagined. For example, a trigger capability
could instruct a machine to start the task “organise lunch in the park” if the
weather is sunny and if no other commitment is scheduled for lunchtime in the
user’s calendar. If the user decides to do this activity, the calendar might also be
updated automatically. Alternatively, a machine could assist the organiser of an
event who decides to “send a message” to a large number of invitees. A machine
might know two methods to automatically “send a message” to a person: by
email and by mobile text. The machine could automatically send the message
to all invitees whose email or mobile number is known. The remaining invitees
could then be manually contacted by the event organiser using other channels.
This scenario highlights the flexibility of human-machine collaboration, since a
purely manual approach would be ine�cient, and a purely automatic approach
would be infeasible. More examples of machine capabilities that are being used
by non-programmer users can be found on the ifttt website.

3 Problem Description

The concept of tasks refers to things that can be accomplished. As such, they
can be used to define goals, namely things that a person wants to accomplish.
The main use of the concept of tasks is to provide a layer of abstraction over
the actual actions that are performed to accomplish them. The types of tasks
that humans can describe is very broad, and when interacting with machines,
the level of abstraction at which they are described plays an important role. At
the opposite ends of the abstraction spectrum we can find very abstract tasks,
such as “Behave well”, and very specific tasks, such as “Increment variable X
by 1 unit”. Typically, machines struggle to understand abstract tasks, while
they can often accomplish specific tasks more e�ciently than humans. Humans,
on the other hand, can easily describe tasks in abstract terms, but struggle to
define them in a very specific and rigorous way. Tasks that are too abstract for

5 http://wiki.dbpedia.org/

6KDUHG
.QRZOHGJH

%DVH

:HE
,QWHUIDFH 0DFKLQH

+XPDQ

UHDG

ZULWH

UHDG

ZULWHWULJJHU�RSHUDWLRQV

YLVXDOL]H

Fig. 1. Schema of the main components of our framework. Humans and machines
interact with each other through a shared knowledge base.

machines to automate, or too specific for humans to describe, are outside the
focus of this paper. Our hypothesis is that there is a non-empty intersection T
between the tasks that can be easily defined by (non-programmer) humans H,
and those that are understandable by machines M . Lacking a previous baseline
to compare to, we define a task to be easily definable if the majority of (non-
programmer) humans can define it at a su�cient level of abstraction for it be
machine understandable.

Our objective is to allow (non-programmer) humans to make better use of
machine functionalities on the Web by allowing machines to understand which
of their services is needed and when. This type of human-machine collaboration
can be achieved by having humans and machines interact through a shared
knowledge base. To this end, the problem that we address is how to allow a (non-
programmer) web user to share (1) human-made instructions and (2) information
on the progress made at completing the tasks described in those instructions, in
a format that is both human and machine understandable.

4 Methodology

At the core of our approach for allowing human-machine collaboration is a know-
ledge base that is shared between humans and machines. Humans and machines
collaborate with each other by interacting with this knowledge base, as depicted
in Figure 1. The contents of the knowledge base rely on the prohow vocabu-
lary. This is a Linked Data vocabulary that we developed for key concepts that
occur in human-made instructions (such as steps and requirements) or that de-
scribe aspects of their execution (such as information as to which steps have
been completed).

In our approach, communication is performed indirectly, by modifying the
shared knowledge base. This can be seen as a type of stigmergy [6], namely in-
direct communication through modification of the environment. For example, if
a machine wants to communicate to humans (or to other machines) that a par-
ticular step has been automated, this will be done by adding this information to
the knowledge base. This type of indirect communication avoids the problem of
how to implement direct communication between human and machines. Instead,
it casts human-machine collaboration as a knowledge sharing problem, and as
such it is amenable to being handled by Semantic Web technologies.

Human and machines interact with the knowledge base in two di↵erent ways.
Machines can directly access it to query or modify its contents, since the know-
ledge base is represented as an rdf6 graph. Moreover, machines can understand
this knowledge base by following its logical interpretation, as defined by the pro-
how vocabulary. This logical interpretation allows machines to make inferences
over this knowledge base. For example, a machine could infer that a certain task
has been implicitly accomplished because all of its steps have been completed, or
it could infer that it is not yet time to complete a certain task because some of
its requirements are still incomplete. The logical interpretation of the prohow
vocabulary will follow in Section 5.

Humans, on the other hand, interact with this knowledge base through an
intuitive Web interface. This interface allows humans to “read” the knowledge
base by providing it in a human-readable format. For example, while a machine
could query the knowledge base to retrieve all the steps of a given task, a human
could visualize the list of steps in an html page. This interface also allows
humans to “write” to the knowledge base. This can be done, for example, by
parsing a user’s natural language instructions into rdf, or by interpreting a
user action of ticking o↵ a certain step as an indication that the step has been
completed. An implementation of this interface will be presented in Section 6.

Once humans and machines interact through a shared knowledge base, they
can collaborate on the execution of tasks. This collaboration can be divided into
three phases: (1) know-how acquisition, (2) know-how linking and (3) execution.
We will now describe the typical workflow of our framework across these phases.

4.1 Know-How Acquisition

In the first phase of our framework, know-how is converted into Linked Data.
Our hypothesis is that humans can write instructions in semi-structured for-
mat. Websites like wikiHow, for example, require users to explicitly divide their
instructions into steps, methods and requirements. Further support for our hy-
pothesis is provided by the existence of large instructional websites that contain
instructions with this level of structure. Evidence of this has been provided
by a large scale conversion of over 200,000 instructions from the wikiHow and
Snapguide7 websites into an rdf format using the prohow vocabulary [7].

This existing structure can be extracted and represented in rdf. For example,
consider the following natural language instructions for the string transformation
task :t described in Section 2:

Step 1: Remove < and > from the string of text.
Step 2: Substitute the wikipedia page of the city in the string

of text with official homepage of the city.
Step 3: Enclose the string of text with .

6 http://www.w3.org/TR/rdf11-concepts/
7 https://snapguide.com/

Table 1. The rdf namespaces used in this document.

Prefix Namespace
prohow: http://w3id.org/prohow#
rdfs: http://www.w3.org/2000/01/rdf-schema#
: http://example.org/

By exploiting the implicit structure of this text, it is possible to automatically
generate the following rdf graph. rdf graphs listed in this paper are serialised
in Turtle8 format, and use the namespaces defined in Table 1.

:t prohow:has_step :1, :2, :3 .
:1 rdfs:label "Remove < and > from the string of text." .
:2 rdfs:label "Substitute the wikipedia page of the city in the

string of text with official homepage of the city." .
:3 rdfs:label "Enclose the string of text with ." .
:2 prohow:requires :1 .
:3 prohow:requires :2 .

This rdf graph explicitly represents the subdivision of task :t into three steps
(:1, :2 and :3) using the prohow:has_step relation. The correct ordering
of the steps is specified by the prohow:requires relations.

4.2 Know-How Linking

In the second phase of our methodology, an existing set of instructions is linked
with automatable functions. For example, we can imagine a machine :x capable
of removing specific characters from strings of text. This machine can describe its
capability in terms of the task it can accomplish. For example, the following rdf
graph describes the task :t1 of “Remove a character from a string of text”. This
task specifies the requirements :r1 “The string of text to modify” and :r2 “The
character to remove” which should be known before the task can be automated.

:t1 rdfs:label "Remove a character from a string of text" .
:r1 rdfs:label "The string of text to modify" .
:r2 rdfs:label "The character to remove" .
:t1 prohow:requires :r1, :r2 .

prohow allows functionalities to be defined at the input/output level. A func-
tionality :f with a set of inputs I and a set of outputs O is described with a
set of prohow:requires and prohow:has_method relations. A prohow:
requires link from :f to one of its inputs :i represents the dependency be-
tween :f and :i, thus making sure that the functionality will not be executed
before its input is available. A prohow:has_method link from an output :o
to :f represents the fact that one way to obtain :o is to perform :f.

8 http://www.w3.org/TR/turtle/

It can be observed that the prohow:requires relation can be used to
represent both the dependency between (1) a task and an input and (2) a task
and a step that needs to be done beforehand. This is a result of the fact that
in the domain of human know-how the distinction between actions and objects
can be blurred. A cooking recipe, for example, could mention the ingredient
“eggs” as an input, or it could mention “get eggs” as one of its steps. In such
a situation, the choice of whether to represent something as an object or as an
action is arbitrary, and it should not lead to semantically di↵erent formalisations.
Therefore, the prohow vocabulary diverges from typical process formalisations
in that it does not enforce a distinction between actions and objects.

Going back to our example, we can imagine a step :t2 of a procedure that
requires the character “<” to be removed from string :s. This step can be linked
to the functionality o↵ered by machine :x with the following triples:

:t2 prohow:has_method :t1 .
:t2 prohow:has_constant :c1 .
:c1 rdfs:label "<" .
:r1 prohow:binds_to :s .
:r2 prohow:binds_to :c1 .

Once this link has been created, machine :x will detect that its capability of
accomplishing task :t1 can also be used to accomplish task :t2. When task :t2
needs to be completed, machine :x will try to accomplish it by executing :t1.
Bindings between tasks can be used to specify which particular parametrisation
of a task can be used to accomplish another task. In this scenario, for example,
the character to remove :r2 is bound to the constant “<”. These types of links
can connect a single machine functionality, or one of its parametrisations, to
any number of more abstract tasks that this functionality can accomplish. For
example, task :t1 could be linked to any string modification task that specifies
a string and a character to remove from that string.

The discovery of these kind of links can be seen as a form of subsumption
matching, since the set of possible ways of accomplishing the more abstract task
subsume the set of possible ways of accomplishing the more specific one. This
discovery process can be performed in di↵erent ways. In a previous experiment,
we automated the creation of links between di↵erent sets of instructions from
wikiHow (in the prohow format) using Natural Language Processing and Ma-
chine Learning [7]. This showed that creating links between sets of prohow
instructions can be achieved with high accuracy. Indeed, the number and preci-
sion of the discovered links was shown to be superior to the equivalent human-
generated html links already present in wikiHow. In this paper we consider
instead a semi-automated approach. Whenever a set of instructions is created,
an artificial system can select from a large number of available resources the
ones that seem to be most related to each part of the instructions. Humans will
then be asked to verify whether a link should be created or not.

4.3 Execution

When a human or a machine intends to execute a task, an rdf graph is created
that declares a new execution of that task. For example, the following triple is
su�cient to declare a new attempt :en to accomplish task :t.

:en prohow:has_goal :t .

Declaring this intention could be as simple as pressing a “Do it!” button available
on the same web page that describes task :t.

After the creation of this triple, it is possible to retrieve information about
:en in order to view (and if necessary modify) the current state of the execution.
For a human user, a visualization of :en could display, for example, which
steps of the procedure have already been completed, and which still need to be
completed. We can represent the fact that the execution :ex1 of the first step
:1 of the instructions :t has been completed with the following graph:

:ex1 prohow:has_task :1 .
:ex1 prohow:has_result prohow:complete .
:ex1 prohow:has_environment :en .

After this information is stored in the shared knowledge base, all the humans
and machines collaborating on this task will be able to discover that the first
step :t1 has been completed. They would then infer that it no longer needs to
be carried out and could decide to execute the following step instead.

5 Logical Interpretation of the PROHOW Vocabulary

This section describes the logical interpretation of the prohow vocabulary that
enables machines to understand the shared knowledge base of our framework.
The terms of this vocabulary are listed in Table 2, and follow the namespaces
described in Table 1.

The most important concept in the prohow vocabulary is the concept of
task (prohow:task). The same task can be accomplished multiple times. For
example, in the example scenario introduced in Section 2, the string transforma-
tion task would need to be completed once for each string of text that needs to
be transformed. The concept of environment (prohow:environment) is used
to group together all the information about a specific intention to achieve a task.
We use the logical expression has goal(e, y) to indicate that the main task (or
goal) of environment e is task y.

With the term execution (prohow:execution) we refer to a particular
attempt to complete a task. A task y is complete (prohow:complete) in an
environment e if there is an execution i in that environment that has succeeded
(Formula 1); it is said to be failed (prohow:failed) if that execution has
failed instead (Formula 2). Intuitively, the completion of a task means that a
satisfactory result has been reached, and there is no need for completing the

Table 2. The concepts and relations of the prohow vocabulary.

Concept Description of the concept
prohow:task a task that can be accomplished
prohow:execution an attempt to perform a task
prohow:environment a collection of executions to achieve a goal
prohow:complete the positive result of accomplishing a task
prohow:failed the negative result of accomplishing a task

Relation Logical definition (with subject y and object x)
prohow:requires requires(y, x)
prohow:has_step has step(y, x)
prohow:has_method has method(y, x)
prohow:has_task has task(y, x)
prohow:has_goal has goal(y, x)
prohow:binds_to binds(y, x) ^ binds(x, y)
prohow:has_constant has constant(y, x)
prohow:has_value has value(y, x)
prohow:has_result success(y) if x is prohow:complete

failure(y) if x is prohow:failed
prohow:has_environment has env(y, x)
prohow:sub_environment_of sub env(y, x)

same task in the same environment again. If an execution has failed instead, it is
possible to attempt another execution of the same task in the same environment.

complete(y, e) (= 9i.has env(i, e) ^ has task(i, y) ^ success(i) (1)

failed(y, e) (= 9i.has env(i, e) ^ has task(i, y) ^ failure(i) (2)

An environment is said to be finished when its goal is complete:

finished(e) (= 9g.has goal(e, g) ^ complete(g, e) (3)

Tasks are not only used to denote actions, such as “Remove all the < and >
characters from a string of text” but they are also used to refer to objects
and data, such as “the string of text” that needs to be modified. In this last
case, completing a task means obtaining the object or discovering its value as
a variable. The particular object / value associated with a completed execution
might be specified using the has value relation. With the following formula we
state that an object-task y has a value of z in environment e if there is a complete
execution in that environment that refers to task y and has value z:

value(z, y, e) (= 9i.has env(i, e)
^ has task(i, y) ^ success(i) ^ has value(i, z)

(4)

A common property of tasks is the set of requirements that need to be com-
pleted before the execution of the task is ready to start. A task y is ready in
an environment e if all of its requirements (if any) are complete in the same

environment (Formula 5). If a task is not ready, than no attempt at performing
it, or any of its sub-tasks, should occur. Intuitively, this means that a task can
be started only when all of its requirements are complete. This relation can also
be used to order (totally or partially) the steps of a task.

ready(y, e) (= 8x.requires(y, x) ! complete(x, e) (5)

If a task y has at least one step, and all of its steps are complete in an environment
e, then task y is also complete in that environment (Formula 6). Intuitively, this
means that a task can be accomplished by accomplishing all of its steps.

complete(y, e) (= 9x.has step(y, x)
V
8x.has step(y, x) ! complete(x, e) (6)

If a method x of a task y is complete in a sub-environment of e, then task y is
complete in environment e (Formula 7). Intuitively, this means that a task can
be completed by completing any of its methods.

complete(y, e) (= 9x, a.has method(y, x) ^ complete(x, a) ^ sub env(a, e) (7)

Environments that are connected with the sub-environment relation are said to
be related environments:

related(a, e) (= sub env(a, e) _ sub env(e, a)
related(a, e) (= 9x.related(a, x) ^ related(x, e)

(8)

Unless bindings have been specified, a task that is complete in one environment
is not necessarily complete in its related environments. A task x is complete in
an environment e if it has a binding with another task y which is complete is an
environment a related to e (Formula 9). Values can be shared in a similar way,
as defined in Formula 10.

complete(x, e) (= 9y, a.binds(x, y) ^ complete(y, a) ^ related(a, e) (9)

value(z, x, e) (= 9y, a.binds(x, y) ^ value(z, y, a) ^ related(a, e) (10)

Bindings can be used to choose which tasks and values can be shared between
environments. For example, the task “Remove a character from a string of text”
could be completed in two di↵erent (but related) environments to remove two
di↵erent characters (e.g. < and >) from the same string of text. In this sce-
nario, the string of text will be shared between the two environments, while the
characters to remove will not.

Values that can be shared between unrelated environments are called con-
stants. If a task y has a constant x, then x will be automatically considered
accomplished in any environment where y is being executed:

complete(x, e) ^ value(x, x, e) (= 9i.has env(i, e)
^ has task(i, y) ^ has constant(y, x)

(11)

It should be noted that the expressiveness of the prohow vocabulary goes be-
yond simple step sequences. In fact, this vocabulary can express all the basic

control flow patterns defined by Van der Aalst et al. [11]. For example, tasks are
by default non-ordered and any partial ordering of the tasks can be expressed
using prohow:requires relations. This implements the sequence, parallel split
and synchronisation patterns. The prohow:has_method relation can describe
a choice point where only one out of multiple paths needs to be followed. Other
tasks can be made to wait until one such path has been completed. This imple-
ments the exclusive choice and simple merge patterns.

6 Human Interfaces to the PROHOW Vocabulary

Unlike machines, humans cannot directly interact with prohow data. Their
interactions need to be mediated through human-understandable interfaces that
allow users to both visualise and modify this data. For example, such an interface
might present entities organised into familiar structures, such as an ordered list
of steps or to-do checklists. In order to allow users to modify the data, several
functionalities need to be implemented. In particular, users should be able to
create new sets of instructions, create links between them, start new executions
of a task and update their progress.

As a proof of concept, we have implemented one such interface as an online
service9 which allows users to follow the three main phases defined in Section
4. This interface includes an online editor that translates free text into rdf
using the prohow vocabulary. This editor parses a user’s input and looks for
keywords such as “Step” and “Requires” to identify steps and requirements.
After parsing the text into an rdf graph, a visualization is provided to the user.
If the user is satisfied with the machine interpretation of the instructions, a save
button stores the generated know-how as an rdf graph in the knowledge base
of the system, minting new uris for each component of the instructions. Those
uris are dereferenceable, and users can use them to request a human-readable
visualization. The same uri can be used by machines to obtain a machine-
readable version. This is done by content negotiation, for example by setting
the Accept header of an http request to application/rdf+xml. The graphical
interface also supports users during the know-how linking and execution phases.
It allows them to create or link steps, methods and requirements and to initiate
and update task executions. The user can choose whether to complete all tasks
manually, or to let the system automate them whenever possible.

7 Experiments

The objective of this experiment is to support our hypothesis that the majority
of (non-programmer) Web users can define certain tasks at a level of abstrac-
tion which is understandable by machines. We evaluated this hypothesis with
respect to the three phases of our framework described in Section 4: know-how
acquisition, know-how linking and execution. This experiment is also meant to

9 http://w3id.org/prohow/editor

Fig. 2. Precision and recall of the links generated by the workers.

demonstrate the application of our approach in a concrete scenario. Human par-
ticipation in this experiment has been obtained through the crowdsourcing plat-
form Crowdflower.10 Participants were asked information about their computer
skills to exclude answers from computer experts.

7.1 Evaluation of the Know-How Acquisition Phase

During the know-how acquisition phase, our hypothesis is that humans can write
semi-structured procedures which can be automatically parsed into an rdf rep-
resentation. We evaluated this by asking 10 workers to solve the example task
described in Section 2 through an online survey.11 Workers submitted their in-
structions in a text-box in natural language. To improve the quality of their
submissions, workers were asked to follow certain rules, such as to clearly divide
their instructions into steps, and were o↵ered a bonus compensation for creating
high quality instructions. All the original submissions are available online.12 Of
the 10 submissions we received, we rejected 3 of them as non-genuine attempts.
Of the remaining submissions, we considered the 5 best solutions for the next
part of the experiment.

7.2 Evaluation of the Know-How Linking Phase

To judge whether non-programmer humans can correctly link instructions to
automatable functions, we have paired each of the 16 steps of the five best
sets of instructions with 10 di↵erent machine functionalities. All automatable
steps have been paired with one or more relevant functionalities, as well as
unrelated ones. For each step-functionality pair, we have then asked workers to
judge whether a particular functionality (in the survey called action), such as
“Remove every occurrence of a particular character from the string of text” is
relevant for the execution of a particular step (in the survey called goal), such as
“Remove < and > from the string of text”. Each worker was asked to choose one
of the following three answers: (1) “YES, this action can completely achieve the
goal”, (2) “YES, BUT the action can only achieve part of the goal” or (3) “NO,

10 http://www.crowdflower.com/
11 http://w3id.org/prohow/r1/survey
12 http://w3id.org/prohow/r1/survey_results

the action is unrelated with the goal”. For some functionalities, workers were
also asked to provide information on how the function should be completed, for
example by answering the question: “Which is the character to remove?”.

For each step-function pair we have asked the judgement of 10 di↵erent work-
ers, and then we have chosen the judgement given by the majority of the workers.
For all questions, the most common answer was always chosen by more than 50%
of the workers. To judge whether an answer is correct or not, we interpret the first
answer as the creation of a prohow:has_method link between the step and
the functionality; the second answer as the creation of a prohow:has_step
relation, and the third answer as no relation. We have manually evaluated the
links generated by the majority of the workers and the precision and recall of
those links is shown in Figure 2. The result of this evaluation shows that the
majority of the workers correctly chose to create a link between a step and a
functionality 97% of the time, discovering 82% of all possible correct links.

7.3 Demonstration of the Execution Phase

To enable collaborative human-machine execution we have developed the ma-
chine functionalities which workers previously created links to. Our system lis-
tens to changes to its knowledge base to detect when and how its functionalities
are needed. When this happens, the system will execute the functionality and
modify the knowledge base accordingly, so as to allow the human user to notice
that a task has been accomplished. As a result of this experiment, all the five
sets of instructions are now available online,13 and each of them contains at least
one automatable function.

8 Related Work

We frame our work at the intersection of several related areas, which highlight
its interdisciplinary nature. The idea of combining human and machine e↵orts
to solve tasks that neither humans or machines alone could solve e�ciently is
central to the field of Human-Computation [8]. In Human Computation systems,
humans typically play a subordinate role, as they have no direct control over
the computation, and are not in charge of initiating it. For example, users of
the Galaxy Zoo14 project are asked to detect patterns in sky images to help
machines to classify galaxies. However, they have no control over the machine
computation that utilizes their contributions. More control is given to users
of Human-Provided Services (HPS) [10]. For example, HPS users can actively
define and advertise the services they want to o↵er, and manage their interactions
with other users. In general, Human Computation is better suited to accomplish
large and complex tasks, while HPS can better address dynamic tasks with rich
user interactions. However, both of them require expert intervention to define

13 http://w3id.org/prohow/r1/instructions
14 http://www.galaxyzoo.org/

task workflows and therefore neither of them can e↵ectively address the goals of
individual users. The main objective of our work, instead, is to put humans in
control of the computation. In our framework, humans participate to solve tasks
that they have defined and that they are directly interested in accomplishing.

In our approach, non-programmer users define workflows by providing nat-
ural language instructions. While we limit the analysis of these instructions at
the structural level (e.g. steps and requirements), the possibility of extending
this analysis by means of Natural Language Processing has been investigated
in the literature. For example, an approach has been developed to translate if-
this-than-that constructs from natural language into executable programs [9].
Other approaches are more domain specific, such as focusing on cooking recipes
[4]. Similarly to Controlled Languages, most of those approaches rely on certain
structural or lexical properties of the instructions to extract their meaning.

Several languages have been created to describe processes in di↵erent fields,
most notably OWL-S [5] in the Semantic Web community. While the majority
of these languages focuses on describing automated functionalities, such as Web
Services, some languages also include human participation in the computation.
For example, the CompFlow [3] ontology allows the definition of workflows that
can interleave both human and machine computation. None of these languages,
however, is meant to be understandable by generic Web users, and experts are
required to define the specific workflows. Moreover, most of these formalisa-
tions are too domain specific or logic heavy to conveniently represent human
know-how. For example, human tasks are incompatible with OWL-S, since this
ontology defines a process as a “specification of the ways a client may interact
with a service” [5]. It should be noted, however, that integrations between pro-
how and other languages are possible. For example, the uri of a prohow task
could point to an OWL-S service that might accomplish the task once invoked.

In our framework, humans and machines interact through the modification
of a shared rdf knowledge base. This type of indirect communication resembles
Blackboard Systems (BS) [1]. In BS, multiple agents collaborate to compute the
solution to a problem by modifying a shared resource (the blackboard). From BS
originates another related communication mechanism: Triple Space Computing
(TSC) [2]. In the TSC approach, coordination between Semantic Web Services is
achieved indirectly by publishing and reading rdf resources on the Web, which
are organised into Triple Spaces. TSC includes several functionalities, such as the
possibility to create, advertise or subscribe to particular Triple Spaces. Although
useful in a more generic setting, such functionalities are not currently included
in our framework, which can be imagined as having a single Triple Space.

9 Conclusion

In this paper we have addressed the problem of enabling non-programmer hu-
mans to specify the type of behaviour they require from machines, as opposed
to being constrained by pre-defined functionalities. To solve this problem we
have presented the first framework that allows non-programmers to define and

execute human-machine workflows—that is, workflows that combine human and
machine actions to achieve a common goal.

Human-machine collaboration is achieved by indirect communication through
a shared Linked Data knowledge base defined with our prohow vocabulary. The
logical interpretation associated with this vocabulary makes the knowledge base
machine understandable, allowing machines to infer when and how their func-
tionalities are required. At the same time, this knowledge base is made human
understandable by a direct visualization of its contents through an intuitive web
interface. Using this interface, user-generated instructions in natural language
are automatically translated into Linked Data.

Unlike a modelling language, the main objective of our vocabulary is not to
describe how humans and machines collaborate, but rather to enable this collab-
oration in practice. To demonstrate this, we presented an implementation of our
framework which we evaluated in a concrete test scenario. The results of this
experiment support our hypothesis that non-programmers can specify certain
types of instructions at the level of detail required for machine understanding.

References

1. D. D. Corkill. Blackboard Systems. AI Expert, 6(9):40–47, 1991.
2. D. Fensel, F. M. Facca, E. Simperl, and I. Toma. Triple Space Computing for

Semantic Web Services. In Semantic Web Services, pages 219–249. 2011.
3. N. Luz, C. Pereira, N. Silva, P. Novais, A. Teixeira, and M. Oliveira e Silva. An

Ontology for Human-Machine Computation Workflow Specification. In Hybrid
Artificial Intelligence Systems, volume 8480 of LNCS, pages 49–60. 2014.

4. J. Malmaud, E. J. Wagner, N. Chang, and K. Murphy. Cooking with Semantics. In
Proceedings of the ACL 2014 Workshop on Semantic Parsing, pages 33–38, 2014.

5. D. Martin, M. Burstein, J. Hobbs, et al. OWL-S: Semantic Markup for Web
Services. W3C member submission, 2004.

6. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
Artifacts: Environment-Based Coordination for Intelligent Agents. In Proceedings
of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 1, pages 286–293, 2004.

7. P. Pareti, B. Testu, R. Ichise, E. Klein, and A. Barker. Integrating Know-How into
the Linked Data Cloud. In Knowledge Engineering and Knowledge Management,
volume 8876 of LNCS, pages 385–396. 2014.

8. A. J. Quinn and B. B. Bederson. Human Computation: A Survey and Taxonomy
of a Growing Field. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1403–1412, 2011.

9. C. Quirk, R. Mooney, and M. Galley. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics (ACL-15), pages 878–888, 2015.

10. D. Schall. Service-Oriented Crowdsourcing: Architecture, Protocols and Algorithms,
chapter Human-Provided Services, pages 31–58. 2012.

11. W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

View publication statsView publication stats

https://www.researchgate.net/publication/303098213

