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ABSTRACT
Scheduling jobs with deadlines, each of which defines the lat-
est time that a job must be completed, can be challenging
on the cloud due to incurred costs and unpredictable per-
formance. This problem is further complicated when there
is not enough information to effectively schedule a job such
that its deadline is satisfied, and the cost is minimised. In
this paper, we present an approach to schedule jobs, whose
performance are unknown before execution, with deadlines
on the cloud. By performing a sampling phase to collect
the necessary information about those jobs, our approach
delivers the scheduling decision within 10% cost and 16%
violation rate when compared to the ideal setting, which has
complete knowledge about each of the jobs from the begin-
ning. It is noted that our proposed algorithm outperforms
existing approaches, which use a fixed amount of resources
by reducing the violation cost by at least two times.

Keywords
Bag-of-Task, Scheduling, Deadline, Cloud computing, Un-
known

1. INTRODUCTION
Nowadays, cloud computing, especially Infrastructure as

a Service (IaaS), is widely used by organisations due to its
flexible resource on demand model. Instead of building a
data centre which requires a huge upfront investment, an or-
ganisation can simply acquire and pay for virtual resources.
Moreover, cloud computing also removes the cost and time
overhead for managing and maintaining physical resources.

On the other hand, adopting cloud computing can be chal-
lenging because of its unique characteristics. First of all, due
to its pay-as-you-go scheme, any decision regarding using the
cloud resources has to take monetary cost into account, as
a user is billed as soon as the resources are acquired.

Secondly, in order to satisfy the diversity of requirements
of different organisations, cloud providers often offer a wide
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variety of machine types which are different from each other
in not only hardware configuration but also price. On the
contrary, none of the providers offer any support for a user
to determine, which type or combination of multiple types is
suitable for running application(s) so that the desired per-
formance is achieved while remaining cost effective.

Thirdly, the performance of cloud resources is not abso-
lutely guaranteed. For instance, Ward and Barker reported
that the performance of different virtual machines (VMs) of
the same type provided by Amazon Web Service (AWS) [1]
could be vary up to 29% [20]. Moreover, when a user re-
quests for cloud resources, there is a waiting time before the
resources become available. Mao and Humphrey reported
that this wait time could be some times more than 800 sec-
onds [13]. As a result, a user needs a mechanism to handle
the performance uncertainty during runtime.

The last challenge is not directly from cloud computing
but from the need to ensure the Quality-of-Service (QoS) of
applications. According to Microsoft, most of its jobs need
to finish within predefined deadlines [7]. Satisfying QoS can
be more difficult for applications running on the cloud due
the three challenges discussed above.

In this paper, we present our work in scheduling the exe-
cution of multiple jobs with deadlines on the cloud so that
the monetary cost can be kept minimal. Our research fo-
cuses on Bag-of-Tasks (BoT) job which contains multiple
independent tasks and are widely used by both scientific
communities [12] and industrial organisations [9]. In order
to perform scheduling, it is necessary to know the task exe-
cution times, i.e. how long it takes to execute a single task of
a job on a VM of any type. However, this kind of knowledge
may not be available for unknown jobs which have never
been seen before.

The main contribution of this paper is an approach which
schedules unknown jobs with deadlines on the cloud by sam-
pling in order to retrieve a job’s characteristics which can be
used for scheduling. Our proposed approach is a continuous
mechanism which is able to handle jobs which are submitted
at different times.

Based on our evaluation, the proposed approach is able to
schedule jobs without prior knowledge and keep the violation
cost within 30% compared to the ideal case when there is
full knowledge of the application. Moreover, our approach
outperforms other ones which use fixed amount of resources
by keeping the violation cost at least two times lower.

This paper is structured as follows. Section 2 presents the
related work and distinguishes our research. Section 3 in-
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troduces the mechanism for scheduling jobs with deadlines
when task execution times are already available. Section
4 proposes an approach to handle an unknown job. Sec-
tion 5 introduces a dynamic reassignment feature to handle
performance uncertainty during runtime. Our approach is
evaluated in Section 6. Section 7 concludes this paper.

2. RELATED WORK
Scheduling job executions within a distributed environ-

ment has always received a lot of attention by both aca-
demic and industrial researchers. The academic community
mostly focuses on Grid computing due to its nature which
facilitates the collaboration between many organisations for
sharing computing resources [8]. Each proposed research
aims to optimise one or multiple criterion regarding the per-
formance of an application on the grid. Ranganathan and
Foster proposed the task assignment and data replication ap-
proaches to reduce the geographical distance between data
and computation [17]. Beaumont et al. aimed to maximise
the number of tasks executed concurrently while ensuring
fair resource sharing between applications [3]. Benoit et al.
took another approach to minimise the application runtime
while sharing resources betweens applications [4].

On the other hand, researchers working in industry seem
to be more interested in scheduling applications and jobs
in cluster environment since their organisations can afford
to build private data centres. In general, those scheduling
frameworks aim to minimise the runtime of jobs executed
within a data centre [9, 5]. Furthermore, Microsoft has re-
ported that their scheduling framework takes job deadlines
into account while perform scheduling [7]. Academic re-
searchers have developed frameworks, such as Sparrow [16]
and Mesos [11], with the goal of minimising the execution
time of jobs on the cluster.

When scheduling jobs on grid and cluster environments,
the goal is to greedily acquire existing resources as much as
possible and as quickly as possible. However, this strategy
cannot be applied on cloud environment due to the monetary
cost involved for acquiring and using resources. As a result,
the scheduling mechanism must take into account not only
performance but also monetary cost.

Amato et al. [2] and Garcia et al. [10] proposed cloud
brokering approaches to minimise cost while satisfying re-
quirements in term of hardware resources, such as the num-
ber of CPU cores or the amount of memory. However, these
approaches may not be applicable since the same amount of
cloud hardware can have different performance at different
times, as mentioned in the previous section.

More recent researchers, including ourselves, have started
to investigate the problem of scheduling BoT jobs on the
cloud with constraints such as budget or deadlines based on
task execution times which were assumed to be known [14,
19, 18]. The work of Oprescu et al. addresses a similar
problem reported in this paper by proposing an approach
to schedule a BoT job on the cloud without any knowledge
regarding task execution times [15]. Nevertheless, our re-
search can be distinguished from any existing research in
the following two ways: (i) our approach is able to han-
dle multiple jobs, and (ii) we ensure QoS by satisfying job
deadlines instead of monetary budget.

3. SCHEDULING JOBS WITH DEADLINES
ON THE CLOUD

In this section, we introduce an approach to schedule a
job execution on the cloud so that not only is its deadline
satisfied but also the monetary cost is minimised.

3.1 Resource Selection Model
Let IT denote all available instance types. Each instance

type it ∈ IT has a price pit. It should be noted that each
instance type is charged per time block which contains Θ
seconds, for instance a one hour time block contains 3600
seconds. In other words, a user still has to pay for the full
time block even if the VM runs for less than one hour.

Let j be the submitted job that needs to be scheduled. It
belongs to an application aj and its number of tasks is nj .
We separate the job and application so that it is possible for
jobs of the same application to be submitted more than one
time, e.g. recurring jobs. Finally, all of its tasks must be
completely executed by the deadline dj .

Let ej,it = eaj ,it be the average task execution time of
a job j (or an application aj) on an instance of type it.
Which means that ej,it is the amount of time in seconds
that it takes for an instance of it to finish executing a task
of job j. Notably, ej,it is just an average value, the actual
task execution time can vary in runtime. This issue will be
discussed and handled in Section 5.

Assume that a job is submitted at the time Γ0 = 0, the
amount of time from when a job is submitted to its deadline
is dj − Γ0 = dj − 0 = dj . Notably, when a new instance
is created, it is not ready immediately but takes a small
but noticeable amount of time to be ready, this overhead
is denoted as β. As the result, the actual available time to
execute a job within its deadline can be calculated as dj−β.

The number of tasks of a job j that can be executed by
one instance of type it can be calculated by dividing the
available execution time to the time it takes to execute on
task since an instance can execute only one task at a time:

nj,it = bdj − β
ej,it

c (1)

The floor function is applied as a task must be fully exe-
cuted.

Assuming that nij,it is the number of instances of type it
which are created in other to execute tasks of j. Hence, the
total number of tasks of j executed by instances of type it
is nij,it × nj,it. As the result, the total number of tasks of j
executed by all instances of all types can be calculated as:

∑
it∈IT

(nij,it × nj,it) (2)

Since all tasks of a job must be executed, the total number
of executed tasks must be equal to or greater than a job’s
number of tasks.

nj ≤
∑

it∈IT

(nij,it × nj,it) (3)

The constraint presented by Equation 3 ensures that all
tasks are executed within a job’s deadline.

In one time block, the total cost can be calculated as:



∑
it∈IT

nij,it × pit (4)

An instance’s running time is from it is created to the time
it finishes the last tasks. As each instance has to finish its
execution before a job deadline dj , it is reasonable to assume
that an instance’s running time is equal to the deadline.
The number of time blocks used by one instance in order to

execute a job is d dj
Θ
e. The ceiling function is used in order

to round up any fraction of a time block to a full time block.
Assuming that workload is evenly distributed among all

instances, hence, all of them finish execution nearly at the
same time. In other words, their execution times are nearly
identical. The total cost of executing a job within its dead-
line can be calculated by multiplying the number of used
time blocks to the cost of each time block:

ddj
Θ
e ×

∑
it∈IT

(nij,it × pit) (5)

As the result, the problem of scheduling a job so that its
deadline is not exceeded and the cost is minimised can be
modelled as the following linear programming problem:

minimise ddj
Θ
e ×

∑
it∈IT

(nij,it × pit)

subject to nj ≤
∑

it∈IT

(nij,it × nj,it)

nj,it = bdj − β
ej,it

c

(6)

3.2 Continuous Job Scheduling
It is assumed that when a job is submitted, it is put into

a first-in-first-out queue and waits to be scheduled. In other
words, only one job is scheduled at a time. Moreover, when
a job is scheduled, there could be some existing instances
which are executing jobs submitted in the past. Hence, it is
possible to re-use those existing instances to execute tasks
of a new job, as long as it does not result in any deadline
violation or additional cost. In the best case scenario, all
tasks from a new job are assigned to the existing instances
and no new instance is required, which means no additional
cost as well.

When it is not possible to assign all tasks of a new job
to the existing instances, new instances must be created to
handle the rest. The number of new instances of each type
can be calculated by solving the Model 6.

Algorithm 1 Jobs Scheduling

1: function SCHEDULE(I, J)
2: for j ∈ J do
3: Assign tasks of j to I
4: if there are remaining tasks then
5: Ij ← the result of solving Model 6
6: I ← I ∪ Ij
7: end if
8: end for
9: end function

The scheduling progress is presented in Algorithm 1. Its

inputs are the list of submitted jobs (J) and the list of ex-
isting instances (I).

For each submitted job, Algorithm 1 tries to assign its
tasks to existing instances (Line 4). Assuming that each
instance maintains a queue of tasks waiting to be executed,
this assignment process simply adds tasks of a submitted
job to the end of that queue as long as the task can be fully
executed before its job’s deadline.

After assigning tasks to existing instances, if there are
remaining tasks, it is necessary to create new instances. The
number of instances of each type can be calculated by solving
Model 6 (Line 5). It should be noted that only remaining
tasks are taken into account.

Finally, the new instances which are created for a submit-
ted job are added to the list of existing ones (Line 6).

4. HANDLE UNKNOWN JOB
In Section 3, it is assumed that the task execution times

of a job (or its application) on all instance types are known
prior to its submission. In this section, we present an ap-
proach for scheduling a job with deadline on the cloud when
its task execution times are unknown. The main idea is to
split an execution into two phases:

• Sampling phase: in which some tasks of a jobs are
executed on instances of all available types so that
their actual execution times can be retrieved. The task
execution time of a job on an instance type is calcu-
lated as the mean of all actual execution times of all
sampling tasks assigned to an instance of that type.

• Full execution phase: based on the average task
execution times, the remaining tasks of a submitted
job are scheduled to be executing using an approach
presented in Section 3.

4.1 Determine the Sampling Duration
When a job of an unknown application is submitted, the

sampling phase starts. In this phase, some tasks of a job
are assigned to an instance of each type for execution. The
actual execution time of an task is retrieved and later used
to estimate the average task execution of a job’s application
on each instance type.

The most important factor to consider before running the
sampling phase is its duration, i.e. how long the sampling
phase should last. If a duration is too short, only few, or
even none, of the sampling tasks are executed, hence the
retrieved data may not be sufficient to estimate the average
task execution time. On the other hand, if a duration is
too long, the full execution phase is delayed further, which
means the available time for execution is shortened. No-
tably, while calculating this duration, the instance creation
overhead must be taken in to account since it may require to
create new instances in both the sampling duration, when an
instance type has no available instance to receive sampling
tasks, and the full execution phase, when new instances are
required to execute a job within its deadline.

In our approach, a duration of the sampling phase is cal-
culated as a fraction of a job’s available execution time, the
amount of time from when a job it submitted to its dead-
line. For instance, the sampling phase can take 5% or 10%
of a job’s available execution time. As a result, we assume
that when a job of an unknown application is submitted,



its available execution time must be large enough to have
a sufficient amount of time for a duration of the sampling
phase. The affect of a length of a duration of the sampling
phase will be investigated later.

Formally, given a job j with deadline dj , if the sampling
duration takes 10% of a job’s available deadline then dsj =
10%× dj .

4.2 Assign Sampling Tasks to Instances
After a duration of the sampling phase is decided, tasks

of an unknown application are assigned to one instance of
each type. Ideally, it is possible to schedule the sampling
phase on all existing VMs, hence no new ones are required,
thus no additional cost. On the other hand, if there is any
instance type with no available instance to receive sampling
tasks, a new VM of this type must be created.

4.2.1 Calculate the Permissible Delay of an Instance
Before assigning sampling tasks to an existing instance,

it is necessary to calculate how much workload an instance
can receive. It should be noted that as a sampling should
start as soon as possible, an existing instance must execute
the sampling tasks immediately. In other words, an existing
instance has to stop and delay an execution of its remain-
ing tasks, i.e. execution preemption. However, delaying an
execution of existing tasks may result in deadline violation.
As a result, it is necessary to calculate the permissible delay
of an instance, i.e. the amount of time to delay the execu-
tion of all existing tasks in an instance without resulting in
deadline violation.

We assume that there is only one job of an unknown ap-
plication is in execution of a time. In other words, when it
is submitted, all other jobs are of known applications, i.e.
their task execution times are known. Hence, it is possible
to estimate the start and finish times of all tasks assigned
to an instance.

For example, given an instance i that has to execute two
tasks tj1 and tj2 of jobs j1 and j2 respectively. Moreover,
the task execution times ej1,iti and ej2,iti are known. As a
result, if i starts executing tj1 at the time Γ0, an execution
can be estimated to finish at Γ0 + ej1,iti , which is also the
time when i starts executing the next task tj2 . Finally, the
second task is completely executed at Γ0 + ej1,iti + ej2,iti .

Given a task t which is assigned to an instance i, let fit,i
denote its estimated finish time. Moreover, let dt be the
deadline of a task, i.e. the deadline of a job containing a
task. Hence, dt − fit,i is the amount of time from when a
task’s execution finishes until its deadline. In other words,
it is also the permissible delay of a task’s execution on an
instance, i.e. a task’s execution can be delay for dt − fit,i
without resulting in deadline violation.

Given an instance i, let Ti be the list of its tasks which
have not been executed yet, including a task which is cur-
rently in execution but not yet finished. In order to start
executing the sampling task immediately on an instance, its
remaining tasks must be delayed without resulting in any
deadline violation. Hence, the permissible delay of all tasks
on an instance is the minimum permissible delay of all tasks,
which is calculated as: pdi = mint∈Ti (dt − fit,i).

4.2.2 Select and Assign Sampling Tasks to Instances
The process that selects and assigns sampling tasks to in-

stances is described by Algorithm 2. Its inputs are all avail-

Algorithm 2 Assign Sampling Tasks

1: function ASSIGN SAMPLING(IT, I, j, dsj)
2: for it ∈ IT do
3: pdit ← 0
4: iit ← null
5: for i ∈ I do
6: if iti = it then
7: if pdi ≥ dsj ∧ pdi > pdit then
8: pdit ← pdi
9: iit ← i

10: end if
11: end if
12: end for
13: end for
14: for it ∈ IT do
15: if iit = null then
16: iit ← new instance of type it
17: end if
18: Assign sampling tasks to iit
19: end for
20: end function

able instance types IT , all existing instances I, a submitted
job j whose application is unknown, and the sampling du-
ration dsj . Its objective is to assign sampling tasks to one
instance of each type.

First of all, Algorithm 2 tries to find existing instances
which are able to receive sampling tasks (From Line 2 to
Line 13). Notably, for each instance type, only one VM
is selected. The selected instance is the one with highest
permissible delay, which must also be greater than or equal
to duration of the sampling phase, among other instances of
the same type (Line 7).

It is possible to have instance types that have no available
VM to receive sampling tasks. Those type may have no
existing instances or their instances do not have sufficient
permissible delay to receive sampling tasks. In either case,
ew instances of those types are created (Line 16).

The number of sampling tasks assigned to each instance
should be large enough to provide sufficient average task
execution time, around 10 tasks should be enough. Notably,
it is not necessary for all sampling tasks to be executed, as
the rest of them will be executed in the full execution phase.
Hence, assigning too many sampling tasks to an instance
does not have any negative impact on overall performance.

4.3 Monitoring and Estimating the Task Exe-
cution Times

After assigning and start executing sampling tasks on in-
stances, the execution is monitored in order to retrieve the
actual execution of each task on an instance.

The sampling phase is completed when either all sampling
tasks are executed or the sampling phase times out. After
that, all the actual execution times of each tasks are used
to estimate the task execution time of a job’s application on
all instance types.

After that, the task execution time of a job’s application
on an instance type is calculated as the average value of the
actual execution times of all sampling tasks assigned to an
instance of that type. However, if an instance is not able
to execute even a single task, a very large value is used as
the task execution time so that an instance type will not be



considered for scheduling.
With the estimated task execution times, a job with its

remaining tasks, excluded executed sampling tasks, is sched-
uled to be executed within its deadline using the approached
introduced in Section 3.

5. DYNAMIC REASSIGNMENT
The task execution time is used to estimate how long it

takes an instance to execute one task. However, this value is
not absolute but just an average estimation. In other words,
two tasks of the same job may take the different amount of
time to be executed on the same VM, which may result in
unexpected delay, or even deadline violation. As a result, a
dynamic reassignment mechanism is introduced.

Algorithm 3 Dynamic Assignment

1: function DYNAMIC REASSIGNMENT(I)
2: for i ∈ I do
3: Update the estimated finish times of remaining

tasks of i
4: if ∃t ∈ Ti s.t. fit > dt then
5: if ∃i′ ∈ I − {i} s.t. pdi′ ≥ et,i′ then
6: Reassign t from i to i′

7: end if
8: end if
9: end for

10: end function

Algorithm 3 presents the dynamic reassignment mecha-
nism, which is performed periodically. First, the finish times
of all tasks of each instance are updated (Line 3). A poten-
tial violation on an instance is detected if one of its tasks is
estimated to finish after a deadline (Line 4).

A violated task is then moved to another instance whose
permissible delay is greater than or equal the execution time
of a task on that instance (Lines 5 and 6). In other words,
the receiving instance is able to execute an additional task
without resulting in a deadline violation.

Notably, it is possible that there is no available instance to
receive tasks from a potentially violating instance. In that
situation, the violation is unavoidable. This scenario will be
investigated in the future work.

6. EVALUATION
In this section, we consider the implementation, the ex-

perimental set up and the results obtained.

6.1 Implementation
We have developed a Scala framework which is able to

receive submitted jobs, perform scheduling and monitor the
execution. The Model 6 is modelled and solved using Gurobi
1, an optimisation solver.

6.2 Experiment Setup
The setup of a trace-based simulation experiment is con-

sidered. In order to shorten the length of each experiment
run, we define time blocks of 10 minutes (600 seconds). The
instance creation overhead, i.e. Θ, is set to 15 seconds.

1http://www.gurobi.com/

Table 1: AWS Instance Types

Name vCPU ECU Mem
(GiB)

Storage
(GB)

Price
per
Hour

m3.medium 1 3 3.75 4 $0.073
m3.large 2 6.5 7.5 32 $0.146
m3.xlarge 4 13 15 80 $0.293

6.2.1 Cloud Platform and Applications
The experiment is performed using three instance types

provided by Amazon Web Service (AWS) cloud 2. The hard-
ware configurations and prices are presented in Table 1.

We use the execution trace of three real life applications
and their task execution times on the selected AWS instance
types are presented in Figure 1. The first application, de-
noted as app1, is a file compression application using lbzip23

to compress data files ranging from 500MB to 1GB. This
application is I/O, memory and CPU intensive and supports
parallelism. The performance is observed to improve when
the application executes on multiple CPU cores although
there is communication between cores.

The second application, denoted as app2, is a machine
learning application that executes sequentially and uses Sup-
port Vector Machines (SVM) for classification of a given
dataset. This is facilitated by using a scientific package
SVM light4. The data sets are made available as input files
ranging from 100MB to 500MB. The application comprises
I/O activity for reading a data file and CPU activity for
training and classification. This is a sequential application
and does not utilise multiple cores.

The last application, denoted app3, is a Molecular Dy-
namics Simulation (MDS) of a 250 particle system in which
the trajectory of the particles and the forces they exert are
solved using a system of differential equations [6]. It is CPU
intensive and embarrassingly parallel. Thus, its performance
increases linearly with the number of cores in a VM.

Finally, the task execution times of the first two appli-
cation have high variation since they perform operation on
files of different sizes. On the other hand, MDS’ task execu-
tion time has negligible variation as its operation is mostly
CPU-bound.
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Figure 1: Task Execution Times

6.2.2 Evaluating Approaches
2http://aws.amazon.com/
3http://lbzip2.org/
4http://svmlight.joachims.org/



Table 2: Job Specification

Job Application Submission
Time

Number
of Tasks

Deadline

j1 app1 0 50 600
j2 app2 300 50 900
j3 app3 600 50 1200
j4 app1 900 100 1500
j5 app2 1200 100 1800
j6 app3 1500 100 2100

In order to evaluate our proposed approach, which sched-
ules unknown BOT jobs with deadlines on the Cloud and
is denoted as unknown, we also perform experiment using
other settings. The first one is the ideal setting which has
full knowledge regarding executing times of applications on
all instance types and is denoted as known. In other words,
this setting can directly use the mechanism presented in Sec-
tion 3 to schedule the submitted jobs while the unknown
one must perform the sampling phase described in Section
4 first.

Our proposed approach is also compared to an approach
which uses fixed amount of resources and applies the round-
robin method to distribute tasks. Instead of scheduling
based on the task execution time, this approach assigns
tasks to any idle VM. There are six different configura-
tions: 8 instances of m3.medium (medium.8), 10 instances
of m3.medium (medium.10), 4 instance of m3.large (large.4),
5 instances of m3.large (large.5), 2 instances of m3.xlarge
(xlarge.2), and 3 instances of m3.xlarge (xlarge.3). These
options are selected since the VMs cost per hour are quite
similar.

6.2.3 Job Submission Pattern
Table 2 presents the job submission pattern used in our

experiment. Overall, there are six jobs with two jobs for
each application. Each job is submitted 300 second apart
from each other. The first three jobs have 50 tasks each
while the last three have 100 tasks each. All jobs have the
same deadline, which is 600 seconds from their submission.

6.3 Experiment Results and Discussion
For each setting, the experiment is performed five times.

Table 3 and Figure 2 presents the total monetary cost and
the number of late tasks, i.e. finished after the job deadlines.

Table 3: Experiment Results

Approach Mean Cost Mean Number of
Late Tasks

known 2.62 2.4
unknown 2.9 2.8
medium.8 2.91 126.0
medium.10 2.92 19.4
large.4 2.42 76.6
large.5 2.92 5.6
xlarge.2 3.51 360.8
xlarge.3 4.04 203.4

In comparison to the ideal known setting, the monetary
cost of the unknown approach is 10% higher. Furthermore,
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Figure 2: Experiment result

its number of late tasks is 16% higher. On the other hand,
the unknown approach out-performs other settings which
use the fixed amount of resources.

The medium.8, medium.10 and large.5 settings have al-
most identical cost as the unknown one; less than 1$ more
expensive. However, compared to the proposed approach,
their numbers of late tasks are significantly higher, ranging
from 2 (large.5) to 45 (medium.8) times higher. For nearly
similar cost, our approach delivers superior quality of service
when compared against other approaches.

Interestingly, using 4 instances of type m3.large results in
the lowest cost, even lower than the known setting, which
has full knowledge regarding task execution times. However,
this setting also has a high degree of violation. On an av-
erage, the number of late tasks is 27 times higher than the
proposed unknown approaches.

Finally, using either 2 or 3 m3.xlarge instances performs
poorly in comparison with other approaches. They not only
are the most expensive options but also have the highest
numbers of late tasks. This can be explained using Figure
1 which presents the task execution times of all applications
on all instance types. It can be seen that in comparison to a
m3.medium (or m3.large) instance, a m3.xlarge one does not
have any significant speed-up. Moreover, a SVM light appli-
cation has nearly identical performance on both of them.
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Figure 3: Violation Costs

On the other hand, because m3.xlarge is two and four times
more expensive compared to m3.large and m3.medium, re-
spectively, with the same amount of money, the number of
m3.xlarge instances is always less than the number of in-
stances of other types, which results in lower execution par-
allelism, since each instance can only execute one task at a
time. In summary, using instances of m3.xlarge has insignif-
icant performance speed-up per instance but significantly
reduces the number of instances to execute tasks in parallel.
As a result, its overall performance is lower in comparison
to other settings.

In order to provide a better comparison between all ap-
proaches, we introduce the violation cost metric which rep-
resents the violation of a execution in term of monetary cost.
First of all, the cost of each non-violated tasks can be cal-
culated by dividing the number of non-violated tasks to the
total cost:

cost per tasks =
total cost

number of non violating tasks
(7)

Then, the violation cost is calculated as:

violation cost = cost per tasks× number of late tasks
(8)

The violation cost of an approach can also be described as
the additional cost required to finish all tasks within their
deadline. Hence, it is desirable to achieve as low violation
cost as possible.

As shown by Figure 3, the violation costs of the unknown
approach is 29% higher than the known one. This is under-
standable since our approach not only costs more but also
has the higher number of late tasks. On the other hand,
the proposed approach still outperforms the rest, whose vi-
olation costs are two (e.g. large.5) to more than 700 times
higher (e.g. xlarge.3).

In order to understand why the unknown, and known,
approaches outperform other ones which use the fix amount
of VMs of the same type, Figure 4 illustrates the overall
number of used time blocks corresponding to each instance
types for each approaches.

It can be seen that, apart from the settings which use the
same instance types, the known and unknown approaches
use the combination of different ones. In other words, us-
ing the model described in Section 3, those two approaches
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are able to select the suitable amount of resources to exe-
cute given workload while ensuring the quality of service,
i.e. deadline.

Notably, the known approach does not use any instance of
type m3.xlarge which is expensive without significant speed-
up, as explained earlier. On the other hand, since the sam-
pling phase requires tasks to be executed on instances of
all types, the unknown approach has to create some in-
stances of m3.xlarge. Due to the cost-inefficiency of this type
which results in lower execution parallelism without signif-
icant performance improvement, our proposed approach is
outperformed by the ideal one.

Finally, we evaluate the resource mis-utilisation of each
approach. There are two types of mis-utilisation: Resource
over-utilisation is when the amount of allocated resources is
more than necessary and results in idle VMs. The over-
utilisation is calculated as the total idle times of all in-
stances. Notably, as showed in Section 6.2.3, jobs are sub-
mitted in the way so that their execution overlap with each
other. Hence, ideally, there should not be any idle instances.

On the other hand, resource under-utilisation happens
when the amount of resources is not sufficient to execute
all tasks within their deadlines. As a result, resource under-
utilisation is calculated as the total violation time.

Figure 5 illustrates the average resource mis-utilisation of
each approach. It can be seen that both the known and
unknown manage to achieve very low resource over- and
under-utilisation in comparison with other ones.

On the other hand, most of the fixed resources setting
have high under-utilisation due to the fact that they have
enough resources to finish some jobs very early before the
submission of the next one. However, occasionally, they do
not have enough resources to execute some other jobs within
deadlines, hence the over-utilisation is also very high.

Finally, the xlarge.2 setting has no idle time but very
high late time. In other words, the allocated resources of
this setting is always less than required.

In summary, the known and unknown approaches are
able to not only achieve low cost but also minimise violation
by flexibly adjust the amount of allocated resources based
on current workload.

7. CONCLUSION
In this paper, we investigated the problem of scheduling

multiple unknown BoT jobs with deadlines on the cloud so
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that the total monetary cost can be minimised. Our pro-
posed approach retrieves required knowledge through a sam-
pling phase and is able to deliver a scheduling decision within
10% cost and 16% violation compared to the ideal setting
which has prior knowlesge. It also outperforms other ap-
proaches that use a fixed amount of resources by reducing
the monetary cost of violation by at least two times.

In the future, we are planning to develop an approach
to support scheduling multiple jobs, known or unknown, at
once instead of one at a time. It will be interesting to in-
vestigate other methods to find task execution times of an
unknown job besides performing sampling.
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